Solveeit Logo

Question

Question: If $\hat{i}$, $\hat{j}$, $\hat{k}$ are unit orthonormal vectors and $\bar{a}$ is a vector, if $\bar{...

If i^\hat{i}, j^\hat{j}, k^\hat{k} are unit orthonormal vectors and aˉ\bar{a} is a vector, if aˉ×rˉ=j^\bar{a} \times \bar{r} = \hat{j}, then aˉrˉ\bar{a} \cdot \bar{r} :

A

0

B

[1,1]\in [-1, 1]

C

(0,1)\in (0, 1)

D

R\in R

Answer

(D)

Explanation

Solution

Given the equation aˉ×rˉ=j^\bar{a} \times \bar{r} = \hat{j}. This implies that j^\hat{j} is perpendicular to both aˉ\bar{a} and rˉ\bar{r}. Therefore, aˉj^=0\bar{a} \cdot \hat{j} = 0 and rˉj^=0\bar{r} \cdot \hat{j} = 0.

Let aˉ=a1i^+a2j^+a3k^\bar{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} and rˉ=r1i^+r2j^+r3k^\bar{r} = r_1\hat{i} + r_2\hat{j} + r_3\hat{k}. From aˉj^=0\bar{a} \cdot \hat{j} = 0, we get a2=0a_2 = 0. So, aˉ=a1i^+a3k^\bar{a} = a_1\hat{i} + a_3\hat{k}. From rˉj^=0\bar{r} \cdot \hat{j} = 0, we get r2=0r_2 = 0. So, rˉ=r1i^+r3k^\bar{r} = r_1\hat{i} + r_3\hat{k}.

Now, let's compute the cross product aˉ×rˉ\bar{a} \times \bar{r}: aˉ×rˉ=(a1i^+a3k^)×(r1i^+r3k^)\bar{a} \times \bar{r} = (a_1\hat{i} + a_3\hat{k}) \times (r_1\hat{i} + r_3\hat{k}) aˉ×rˉ=a1r1(i^×i^)+a1r3(i^×k^)+a3r1(k^×i^)+a3r3(k^×k^)\bar{a} \times \bar{r} = a_1r_1(\hat{i} \times \hat{i}) + a_1r_3(\hat{i} \times \hat{k}) + a_3r_1(\hat{k} \times \hat{i}) + a_3r_3(\hat{k} \times \hat{k}) Using i^×i^=k^×k^=0\hat{i} \times \hat{i} = \hat{k} \times \hat{k} = 0, i^×k^=j^\hat{i} \times \hat{k} = -\hat{j}, and k^×i^=j^\hat{k} \times \hat{i} = \hat{j}: aˉ×rˉ=a1r3(j^)+a3r1(j^)=(a3r1a1r3)j^\bar{a} \times \bar{r} = a_1r_3(-\hat{j}) + a_3r_1(\hat{j}) = (a_3r_1 - a_1r_3)\hat{j} We are given aˉ×rˉ=j^\bar{a} \times \bar{r} = \hat{j}. Thus, (a3r1a1r3)j^=1j^(a_3r_1 - a_1r_3)\hat{j} = 1\hat{j} This implies a3r1a1r3=1a_3r_1 - a_1r_3 = 1.

Now, let's compute the dot product aˉrˉ\bar{a} \cdot \bar{r}: aˉrˉ=(a1i^+a3k^)(r1i^+r3k^)\bar{a} \cdot \bar{r} = (a_1\hat{i} + a_3\hat{k}) \cdot (r_1\hat{i} + r_3\hat{k}) aˉrˉ=a1r1(i^i^)+a1r3(i^k^)+a3r1(k^i^)+a3r3(k^k^)\bar{a} \cdot \bar{r} = a_1r_1(\hat{i} \cdot \hat{i}) + a_1r_3(\hat{i} \cdot \hat{k}) + a_3r_1(\hat{k} \cdot \hat{i}) + a_3r_3(\hat{k} \cdot \hat{k}) Using i^i^=k^k^=1\hat{i} \cdot \hat{i} = \hat{k} \cdot \hat{k} = 1 and i^k^=k^i^=0\hat{i} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0: aˉrˉ=a1r1(1)+a1r3(0)+a3r1(0)+a3r3(1)=a1r1+a3r3\bar{a} \cdot \bar{r} = a_1r_1(1) + a_1r_3(0) + a_3r_1(0) + a_3r_3(1) = a_1r_1 + a_3r_3 We have the condition a3r1a1r3=1a_3r_1 - a_1r_3 = 1. We need to determine the possible values of a1r1+a3r3a_1r_1 + a_3r_3.

Let's test with specific vectors. Choose aˉ=i^\bar{a} = \hat{i}. Then a1=1,a3=0a_1=1, a_3=0. The condition a3r1a1r3=1a_3r_1 - a_1r_3 = 1 becomes 0r11r3=10 \cdot r_1 - 1 \cdot r_3 = 1, which means r3=1r_3 = -1. The vector rˉ\bar{r} must be of the form rˉ=r1i^k^\bar{r} = r_1\hat{i} - \hat{k} (since r2=0r_2=0). Then, aˉrˉ=i^(r1i^k^)=r1(i^i^)(i^k^)=r1(1)0=r1\bar{a} \cdot \bar{r} = \hat{i} \cdot (r_1\hat{i} - \hat{k}) = r_1(\hat{i} \cdot \hat{i}) - (\hat{i} \cdot \hat{k}) = r_1(1) - 0 = r_1. Since r1r_1 can be any real number, aˉrˉ\bar{a} \cdot \bar{r} can take any real value.