Solveeit Logo

Question

Question: If $f(x) = cos^{-1}x + cos^{-1}\{\frac{x}{2} + \frac{1}{2}\sqrt{3-3x^2}\}$ then:...

If f(x)=cos1x+cos1{x2+1233x2}f(x) = cos^{-1}x + cos^{-1}\{\frac{x}{2} + \frac{1}{2}\sqrt{3-3x^2}\} then:

A

f(23)=π3f(\frac{2}{3}) = \frac{\pi}{3}

B

f(23)=2cos123π3f(\frac{2}{3}) = 2cos^{-1}\frac{2}{3} - \frac{\pi}{3}

C

f(13)=π3f(\frac{1}{3}) = \frac{\pi}{3}

D

f(13)=2cos113π3f(\frac{1}{3}) = 2cos^{-1}\frac{1}{3} - \frac{\pi}{3}

Answer

A, D

Explanation

Solution

The given function is f(x)=cos1x+cos1{x2+1233x2}f(x) = \cos^{-1}x + \cos^{-1}\left\{\frac{x}{2} + \frac{1}{2}\sqrt{3-3x^2}\right\}. Let x=cosθx = \cos\theta for θ[0,π]\theta \in [0, \pi]. Then 33x2=3(1x2)=3sin2θ=3sinθ\sqrt{3-3x^2} = \sqrt{3(1-x^2)} = \sqrt{3\sin^2\theta} = \sqrt{3}|\sin\theta|. Since θ[0,π]\theta \in [0, \pi], sinθ0\sin\theta \ge 0, so 33x2=3sinθ\sqrt{3-3x^2} = \sqrt{3}\sin\theta.

Substitute x=cosθx = \cos\theta into the expression for f(x)f(x): f(x)=cos1(cosθ)+cos1{cosθ2+3sinθ2}f(x) = \cos^{-1}(\cos\theta) + \cos^{-1}\left\{\frac{\cos\theta}{2} + \frac{\sqrt{3}\sin\theta}{2}\right\} f(x)=θ+cos1{cosθcosπ3+sinθsinπ3}f(x) = \theta + \cos^{-1}\left\{\cos\theta \cos\frac{\pi}{3} + \sin\theta \sin\frac{\pi}{3}\right\} Using the identity cosAcosB+sinAsinB=cos(AB)\cos A \cos B + \sin A \sin B = \cos(A-B): f(x)=θ+cos1{cos(θπ3)}f(x) = \theta + \cos^{-1}\left\{\cos\left(\theta - \frac{\pi}{3}\right)\right\}

Now, we need to evaluate cos1{cos(θπ3)}\cos^{-1}\left\{\cos\left(\theta - \frac{\pi}{3}\right)\right\}. Since θ[0,π]\theta \in [0, \pi], we have θπ3[π3,2π3]\theta - \frac{\pi}{3} \in \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right].

Case 1: θπ30    θπ3\theta - \frac{\pi}{3} \ge 0 \implies \theta \ge \frac{\pi}{3}. This corresponds to cosθcos(π3)=12\cos\theta \le \cos(\frac{\pi}{3}) = \frac{1}{2}. So, for x[1,12]x \in [-1, \frac{1}{2}], we have θπ3\theta \ge \frac{\pi}{3}. In this case, cos1{cos(θπ3)}=θπ3\cos^{-1}\left\{\cos\left(\theta - \frac{\pi}{3}\right)\right\} = \theta - \frac{\pi}{3}. Therefore, f(x)=θ+(θπ3)=2θπ3=2cos1xπ3f(x) = \theta + (\theta - \frac{\pi}{3}) = 2\theta - \frac{\pi}{3} = 2\cos^{-1}x - \frac{\pi}{3}.

Case 2: θπ3<0    θ<π3\theta - \frac{\pi}{3} < 0 \implies \theta < \frac{\pi}{3}. This corresponds to cosθ>cos(π3)=12\cos\theta > \cos(\frac{\pi}{3}) = \frac{1}{2}. So, for x(12,1]x \in (\frac{1}{2}, 1], we have θ<π3\theta < \frac{\pi}{3}. In this case, cos1{cos(θπ3)}=(θπ3)=π3θ\cos^{-1}\left\{\cos\left(\theta - \frac{\pi}{3}\right)\right\} = -(\theta - \frac{\pi}{3}) = \frac{\pi}{3} - \theta. Therefore, f(x)=θ+(π3θ)=π3f(x) = \theta + (\frac{\pi}{3} - \theta) = \frac{\pi}{3}.

Now, let's evaluate f(x)f(x) for the given options:

For x=23x = \frac{2}{3}: Since 23>12\frac{2}{3} > \frac{1}{2}, this falls under Case 2. So, f(23)=π3f\left(\frac{2}{3}\right) = \frac{\pi}{3}. This matches option (A).

For x=13x = \frac{1}{3}: Since 1312\frac{1}{3} \le \frac{1}{2}, this falls under Case 1. So, f(13)=2cos1(13)π3f\left(\frac{1}{3}\right) = 2\cos^{-1}\left(\frac{1}{3}\right) - \frac{\pi}{3}. This matches option (D).