Question
Question: If $f(x) = cos^{-1}x + cos^{-1}\{\frac{x}{2} + \frac{1}{2}\sqrt{3-3x^2}\}$ then:...
If f(x)=cos−1x+cos−1{2x+213−3x2} then:

f(32)=3π
f(32)=2cos−132−3π
f(31)=3π
f(31)=2cos−131−3π
A, D
Solution
The given function is f(x)=cos−1x+cos−1{2x+213−3x2}. Let x=cosθ for θ∈[0,π]. Then 3−3x2=3(1−x2)=3sin2θ=3∣sinθ∣. Since θ∈[0,π], sinθ≥0, so 3−3x2=3sinθ.
Substitute x=cosθ into the expression for f(x): f(x)=cos−1(cosθ)+cos−1{2cosθ+23sinθ} f(x)=θ+cos−1{cosθcos3π+sinθsin3π} Using the identity cosAcosB+sinAsinB=cos(A−B): f(x)=θ+cos−1{cos(θ−3π)}
Now, we need to evaluate cos−1{cos(θ−3π)}. Since θ∈[0,π], we have θ−3π∈[−3π,32π].
Case 1: θ−3π≥0⟹θ≥3π. This corresponds to cosθ≤cos(3π)=21. So, for x∈[−1,21], we have θ≥3π. In this case, cos−1{cos(θ−3π)}=θ−3π. Therefore, f(x)=θ+(θ−3π)=2θ−3π=2cos−1x−3π.
Case 2: θ−3π<0⟹θ<3π. This corresponds to cosθ>cos(3π)=21. So, for x∈(21,1], we have θ<3π. In this case, cos−1{cos(θ−3π)}=−(θ−3π)=3π−θ. Therefore, f(x)=θ+(3π−θ)=3π.
Now, let's evaluate f(x) for the given options:
For x=32: Since 32>21, this falls under Case 2. So, f(32)=3π. This matches option (A).
For x=31: Since 31≤21, this falls under Case 1. So, f(31)=2cos−1(31)−3π. This matches option (D).