Solveeit Logo

Question

Question: If $\frac{x^2 + y^2}{x+y} = 4$, then all possible values of (x - y) is given by...

If x2+y2x+y=4\frac{x^2 + y^2}{x+y} = 4, then all possible values of (x - y) is given by

A

[-22\sqrt{2}, 22\sqrt{2}]

B

{-4, 4}

C

[-4, 4]

D

[-2, 2]

Answer

[-4, 4]

Explanation

Solution

Let the given equation be x2+y2x+y=4\frac{x^2 + y^2}{x+y} = 4. This implies x2+y2=4(x+y)x^2 + y^2 = 4(x+y), and we must have x+y0x+y \ne 0. Let k=xyk = x-y. Then x=y+kx = y+k. Substituting xx in the equation: (y+k)2+y2=4((y+k)+y)    y2+2yk+k2+y2=4(2y+k)    2y2+2yk+k2=8y+4k(y+k)^2 + y^2 = 4((y+k)+y) \implies y^2 + 2yk + k^2 + y^2 = 4(2y+k) \implies 2y^2 + 2yk + k^2 = 8y + 4k. Rearranging into a quadratic equation in yy: 2y2+(2k8)y+(k24k)=02y^2 + (2k-8)y + (k^2-4k) = 0. For real solutions of yy, the discriminant must be non-negative: D=(2k8)24(2)(k24k)0    4(k4)28(k24k)0    4(k28k+16)8k2+32k0    4k232k+648k2+32k0    4k2+640    644k2    16k2D = (2k-8)^2 - 4(2)(k^2-4k) \ge 0 \implies 4(k-4)^2 - 8(k^2-4k) \ge 0 \implies 4(k^2 - 8k + 16) - 8k^2 + 32k \ge 0 \implies 4k^2 - 32k + 64 - 8k^2 + 32k \ge 0 \implies -4k^2 + 64 \ge 0 \implies 64 \ge 4k^2 \implies 16 \ge k^2. This implies 4k4-4 \le k \le 4. We need to check if x+y=0x+y=0 can occur for any kk in this range. If x+y=0x+y=0, then y=xy=-x. Substituting xy=kx-y=k, we get x(x)=k    2x=k    x=k/2x-(-x)=k \implies 2x=k \implies x=k/2. Then y=k/2y=-k/2. If x+y=0x+y=0, then k/2+(k/2)=0k/2 + (-k/2) = 0. The original equation is undefined if x+y=0x+y=0. If y=k/2y=-k/2 is a root of 2y2+(2k8)y+(k24k)=02y^2 + (2k-8)y + (k^2-4k) = 0, then 2(k/2)2+(2k8)(k/2)+(k24k)=02(-k/2)^2 + (2k-8)(-k/2) + (k^2-4k) = 0, which simplifies to k2/2=0k^2/2 = 0, so k=0k=0. When k=0k=0, the quadratic for yy is 2y28y=0    2y(y4)=02y^2-8y=0 \implies 2y(y-4)=0, giving y=0y=0 or y=4y=4. If y=0y=0, x=y+k=0x=y+k=0. Point (0,0)(0,0). x+y=0x+y=0, so this solution is invalid. If y=4y=4, x=y+k=4x=y+k=4. Point (4,4)(4,4). x+y=80x+y=8 \ne 0. This solution is valid, and xy=0x-y=0. Thus, k=0k=0 is a possible value for xyx-y. The possible values of xyx-y are in the interval [4,4][-4, 4].