Solveeit Logo

Question

Question: If $\cot(\theta - \alpha), 3\cot\theta, \cot(\theta + \alpha)$ are in AP (where, $\theta \neq \frac{...

If cot(θα),3cotθ,cot(θ+α)\cot(\theta - \alpha), 3\cot\theta, \cot(\theta + \alpha) are in AP (where, θnπ2,αkπ,n,kI)\theta \neq \frac{n\pi}{2}, \alpha \neq k\pi, n, k \in I), then 2sin2θsin2α\frac{2\sin^2\theta}{\sin^2\alpha} equal to

Answer

3

Explanation

Solution

The problem states that cot(θα)\cot(\theta - \alpha), 3cotθ3\cot\theta, and cot(θ+α)\cot(\theta + \alpha) are in Arithmetic Progression (AP).

For three terms a,b,ca, b, c to be in AP, the condition is 2b=a+c2b = a + c.

Applying this condition: 2(3cotθ)=cot(θα)+cot(θ+α)2(3\cot\theta) = \cot(\theta - \alpha) + \cot(\theta + \alpha) 6cotθ=cos(θα)sin(θα)+cos(θ+α)sin(θ+α)6\cot\theta = \frac{\cos(\theta - \alpha)}{\sin(\theta - \alpha)} + \frac{\cos(\theta + \alpha)}{\sin(\theta + \alpha)}

Combine the terms on the right-hand side: 6cotθ=cos(θα)sin(θ+α)+cos(θ+α)sin(θα)sin(θα)sin(θ+α)6\cot\theta = \frac{\cos(\theta - \alpha)\sin(\theta + \alpha) + \cos(\theta + \alpha)\sin(\theta - \alpha)}{\sin(\theta - \alpha)\sin(\theta + \alpha)}

The numerator is in the form sinAcosB+cosAsinB=sin(A+B)\sin A \cos B + \cos A \sin B = \sin(A+B). Here, A=θ+αA = \theta + \alpha and B=θαB = \theta - \alpha. So, the numerator becomes sin((θ+α)+(θα))=sin(2θ)\sin((\theta + \alpha) + (\theta - \alpha)) = \sin(2\theta).

The equation now is: 6cotθ=sin(2θ)sin(θα)sin(θ+α)6\cot\theta = \frac{\sin(2\theta)}{\sin(\theta - \alpha)\sin(\theta + \alpha)}

Substitute cotθ=cosθsinθ\cot\theta = \frac{\cos\theta}{\sin\theta} and sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta: 6cosθsinθ=2sinθcosθsin(θα)sin(θ+α)6\frac{\cos\theta}{\sin\theta} = \frac{2\sin\theta\cos\theta}{\sin(\theta - \alpha)\sin(\theta + \alpha)}

Given θnπ2\theta \neq \frac{n\pi}{2}, we know that sinθ0\sin\theta \neq 0 and cosθ0\cos\theta \neq 0. Therefore, we can cancel cosθ\cos\theta from both sides and multiply by sinθ\sin\theta: 6=2sin2θsin(θα)sin(θ+α)6 = \frac{2\sin^2\theta}{\sin(\theta - \alpha)\sin(\theta + \alpha)}

Rearrange the equation: 6sin(θα)sin(θ+α)=2sin2θ6\sin(\theta - \alpha)\sin(\theta + \alpha) = 2\sin^2\theta

Now, use the trigonometric identity: sin(AB)sin(A+B)=sin2Asin2B\sin(A-B)\sin(A+B) = \sin^2 A - \sin^2 B. Here, A=θA = \theta and B=αB = \alpha. So, sin(θα)sin(θ+α)=sin2θsin2α\sin(\theta - \alpha)\sin(\theta + \alpha) = \sin^2\theta - \sin^2\alpha.

Substitute this identity back into the equation: 6(sin2θsin2α)=2sin2θ6(\sin^2\theta - \sin^2\alpha) = 2\sin^2\theta 6sin2θ6sin2α=2sin2θ6\sin^2\theta - 6\sin^2\alpha = 2\sin^2\theta

Rearrange the terms to solve for the desired expression: 6sin2θ2sin2θ=6sin2α6\sin^2\theta - 2\sin^2\theta = 6\sin^2\alpha 4sin2θ=6sin2α4\sin^2\theta = 6\sin^2\alpha

We need to find the value of 2sin2θsin2α\frac{2\sin^2\theta}{\sin^2\alpha}. Divide both sides of the equation 4sin2θ=6sin2α4\sin^2\theta = 6\sin^2\alpha by 2sin2α2\sin^2\alpha. 4sin2θ2sin2α=6sin2α2sin2α\frac{4\sin^2\theta}{2\sin^2\alpha} = \frac{6\sin^2\alpha}{2\sin^2\alpha} 2sin2θsin2α=3\frac{2\sin^2\theta}{\sin^2\alpha} = 3

The second part of the question "The expression tanA1cotA\frac{\tan A}{1-\cot A} (1) sinAcosA+1\sin A \cos A + 1" appears to be an incomplete or unrelated query and is ignored in the solution of the main problem.

The final answer is 3\boxed{3}.

Explanation of the solution:

  1. Apply the AP condition 2b=a+c2b=a+c to the given cotangent terms.
  2. Combine the cotangent terms on the RHS using a common denominator.
  3. Recognize the numerator as sin(A+B)\sin(A+B) and simplify to sin(2θ)\sin(2\theta).
  4. Substitute cotθ=cosθsinθ\cot\theta = \frac{\cos\theta}{\sin\theta} and sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta.
  5. Simplify the equation by canceling common terms, noting the given conditions θnπ2\theta \neq \frac{n\pi}{2}.
  6. Use the identity sin(AB)sin(A+B)=sin2Asin2B\sin(A-B)\sin(A+B) = \sin^2 A - \sin^2 B.
  7. Rearrange the resulting equation to solve for the required expression 2sin2θsin2α\frac{2\sin^2\theta}{\sin^2\alpha}.