Solveeit Logo

Question

Question: 3. If cos⁻¹x + cos⁻¹y + cos⁻¹z = x, then...

  1. If cos⁻¹x + cos⁻¹y + cos⁻¹z = x, then
A

x² + y² + z² + xyz = 0

B

x² + y² + z² + 2xyz = 0

C

x² + y² + z² + xyz = 1

D

x² + y² + z² + 2xyz = 1

Answer

x² + y² + z² + 2xyz = 1

Explanation

Solution

Explanation:
Using the standard identity for inverse cosine functions, when

cos1x+cos1y+cos1z=π,\cos^{-1}x+\cos^{-1}y+\cos^{-1}z=\pi,

one obtains

x2+y2+z2+2xyz=1.x^2+y^2+z^2+2xyz=1.

In the given problem the sum is equated to xx, but following the same approach as the similar question (where the sum equals π\pi), we conclude that the correct option is the one that gives

x2+y2+z2+2xyz=1.x^2+y^2+z^2+2xyz=1.

Answer: Option d) x2+y2+z2+2xyz=1x^2+y^2+z^2+2xyz=1.