Solveeit Logo

Question

Question: If $a = \cos \theta + i \sin \theta, b = \cos 2\theta - i \sin 2\theta$ and $c = \cos 3\theta + i \s...

If a=cosθ+isinθ,b=cos2θisin2θa = \cos \theta + i \sin \theta, b = \cos 2\theta - i \sin 2\theta and c=cos3θ+isin3θc = \cos 3\theta + i \sin 3\theta such that if abcbcacab=0\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0, then

A

θ=2kπ,kZ\theta = 2k\pi, k \in Z

B

θ=(2k+1)π,kZ\theta = (2k+1)\pi, k \in Z

C

θ=(4k+1)π,kZ\theta = (4k+1)\pi, k \in Z

D

None of these

Answer

(a) θ=2kπ,kZ\theta = 2k\pi, k \in Z

Explanation

Solution

The given complex numbers are: a=cosθ+isinθ=eiθa = \cos \theta + i \sin \theta = e^{i\theta} b=cos2θisin2θ=cos(2θ)+isin(2θ)=ei2θb = \cos 2\theta - i \sin 2\theta = \cos (-2\theta) + i \sin (-2\theta) = e^{-i2\theta} c=cos3θ+isin3θ=ei3θc = \cos 3\theta + i \sin 3\theta = e^{i3\theta}

The determinant given is: D=abcbcacabD = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}

This is a cyclic determinant. The value of this determinant is given by the formula: D=3abc(a3+b3+c3)D = 3abc - (a^3 + b^3 + c^3)

We are given that D=0D = 0. So, 3abc(a3+b3+c3)=03abc - (a^3 + b^3 + c^3) = 0 This can be rewritten as a3+b3+c33abc=0a^3 + b^3 + c^3 - 3abc = 0.

We know the algebraic identity: a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)

So, the condition D=0D=0 implies: (a+b+c)(a2+b2+c2abbcca)=0(a+b+c)(a^2+b^2+c^2-ab-bc-ca) = 0

This means either a+b+c=0a+b+c=0 or a2+b2+c2abbcca=0a^2+b^2+c^2-ab-bc-ca=0.

The second condition, a2+b2+c2abbcca=0a^2+b^2+c^2-ab-bc-ca=0, can be rewritten as: 12[(ab)2+(bc)2+(ca)2]=0\frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2] = 0 For this sum of squares to be zero, each term must be zero (since a,b,ca,b,c are complex numbers, this holds if they are real, or if we consider magnitude squared, but here it implies ab=0a-b=0, etc.). This implies ab=0a-b=0, bc=0b-c=0, and ca=0c-a=0, which means a=b=ca=b=c.

Let's analyze the two possibilities:

Case 1: a=b=ca=b=c If a=ba=b, then eiθ=ei2θe^{i\theta} = e^{-i2\theta}. This implies eiθ/ei2θ=1e^{i\theta} / e^{-i2\theta} = 1, so ei(θ(2θ))=1e^{i(\theta - (-2\theta))} = 1. ei3θ=1e^{i3\theta} = 1. This means 3θ=2kπ3\theta = 2k\pi for some integer kZk \in Z. So, θ=2kπ3\theta = \frac{2k\pi}{3}.

If b=cb=c, then ei2θ=ei3θe^{-i2\theta} = e^{i3\theta}. This implies ei3θ/ei2θ=1e^{i3\theta} / e^{-i2\theta} = 1, so ei(3θ(2θ))=1e^{i(3\theta - (-2\theta))} = 1. ei5θ=1e^{i5\theta} = 1. This means 5θ=2mπ5\theta = 2m\pi for some integer mZm \in Z. So, θ=2mπ5\theta = \frac{2m\pi}{5}.

For a=b=ca=b=c to hold, both conditions for θ\theta must be satisfied: 2kπ3=2mπ5\frac{2k\pi}{3} = \frac{2m\pi}{5} k3=m5\frac{k}{3} = \frac{m}{5} 5k=3m5k = 3m. Since 3 and 5 are coprime, kk must be a multiple of 3. Let k=3nk = 3n for some integer nZn \in Z. Substituting k=3nk=3n into θ=2kπ3\theta = \frac{2k\pi}{3}: θ=2(3n)π3=2nπ\theta = \frac{2(3n)\pi}{3} = 2n\pi.

Let's check if θ=2nπ\theta = 2n\pi satisfies a=b=ca=b=c: a=ei(2nπ)=cos(2nπ)+isin(2nπ)=1+i(0)=1a = e^{i(2n\pi)} = \cos(2n\pi) + i \sin(2n\pi) = 1 + i(0) = 1. b=ei2(2nπ)=ei4nπ=cos(4nπ)+isin(4nπ)=1+i(0)=1b = e^{-i2(2n\pi)} = e^{-i4n\pi} = \cos(-4n\pi) + i \sin(-4n\pi) = 1 + i(0) = 1. c=ei3(2nπ)=ei6nπ=cos(6nπ)+isin(6nπ)=1+i(0)=1c = e^{i3(2n\pi)} = e^{i6n\pi} = \cos(6n\pi) + i \sin(6n\pi) = 1 + i(0) = 1. Indeed, a=b=c=1a=b=c=1 when θ=2nπ\theta = 2n\pi. This is a valid set of solutions. This matches option (a).

Case 2: a+b+c=0a+b+c=0 eiθ+ei2θ+ei3θ=0e^{i\theta} + e^{-i2\theta} + e^{i3\theta} = 0 This implies (cosθ+isinθ)+(cos2θisin2θ)+(cos3θ+isin3θ)=0(\cos \theta + i \sin \theta) + (\cos 2\theta - i \sin 2\theta) + (\cos 3\theta + i \sin 3\theta) = 0. Separating real and imaginary parts: (cosθ+cos2θ+cos3θ)+i(sinθsin2θ+sin3θ)=0(\cos \theta + \cos 2\theta + \cos 3\theta) + i (\sin \theta - \sin 2\theta + \sin 3\theta) = 0. For this to be true, both real and imaginary parts must be zero.

Real part: cosθ+cos2θ+cos3θ=0\cos \theta + \cos 2\theta + \cos 3\theta = 0 (cosθ+cos3θ)+cos2θ=0(\cos \theta + \cos 3\theta) + \cos 2\theta = 0 Using cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right): 2cos(θ+3θ2)cos(3θθ2)+cos2θ=02 \cos \left(\frac{\theta+3\theta}{2}\right) \cos \left(\frac{3\theta-\theta}{2}\right) + \cos 2\theta = 0 2cos2θcosθ+cos2θ=02 \cos 2\theta \cos \theta + \cos 2\theta = 0 cos2θ(2cosθ+1)=0\cos 2\theta (2 \cos \theta + 1) = 0. This implies either cos2θ=0\cos 2\theta = 0 or 2cosθ+1=02 \cos \theta + 1 = 0.

Imaginary part: sinθsin2θ+sin3θ=0\sin \theta - \sin 2\theta + \sin 3\theta = 0 (sinθ+sin3θ)sin2θ=0(\sin \theta + \sin 3\theta) - \sin 2\theta = 0 Using sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right): 2sin(θ+3θ2)cos(3θθ2)sin2θ=02 \sin \left(\frac{\theta+3\theta}{2}\right) \cos \left(\frac{3\theta-\theta}{2}\right) - \sin 2\theta = 0 2sin2θcosθsin2θ=02 \sin 2\theta \cos \theta - \sin 2\theta = 0 sin2θ(2cosθ1)=0\sin 2\theta (2 \cos \theta - 1) = 0. This implies either sin2θ=0\sin 2\theta = 0 or 2cosθ1=02 \cos \theta - 1 = 0.

Now we need to find θ\theta that satisfies both conditions simultaneously:

  1. (cos2θ=0 or 2cosθ+1=0)(\cos 2\theta = 0 \text{ or } 2 \cos \theta + 1 = 0)
  2. (sin2θ=0 or 2cosθ1=0)(\sin 2\theta = 0 \text{ or } 2 \cos \theta - 1 = 0)

Let's check the combinations: Subcase 2.1: cos2θ=0\cos 2\theta = 0 If cos2θ=0\cos 2\theta = 0, then 2θ=(n+12)π2\theta = (n+\frac{1}{2})\pi, which implies sin2θ=±10\sin 2\theta = \pm 1 \ne 0. For the second equation sin2θ(2cosθ1)=0\sin 2\theta (2 \cos \theta - 1) = 0 to hold, we must have 2cosθ1=02 \cos \theta - 1 = 0, so cosθ=1/2\cos \theta = 1/2. If cosθ=1/2\cos \theta = 1/2, then θ=2kπ±π3\theta = 2k\pi \pm \frac{\pi}{3}. Then 2θ=4kπ±2π32\theta = 4k\pi \pm \frac{2\pi}{3}. cos2θ=cos(±2π3)=1/2\cos 2\theta = \cos(\pm \frac{2\pi}{3}) = -1/2. This contradicts cos2θ=0\cos 2\theta = 0. So, this subcase yields no solution.

Subcase 2.2: 2cosθ+1=02 \cos \theta + 1 = 0 If 2cosθ+1=02 \cos \theta + 1 = 0, then cosθ=1/2\cos \theta = -1/2. Then 2cosθ1=2(1/2)1=11=202 \cos \theta - 1 = 2(-1/2) - 1 = -1 - 1 = -2 \ne 0. For the second equation sin2θ(2cosθ1)=0\sin 2\theta (2 \cos \theta - 1) = 0 to hold, we must have sin2θ=0\sin 2\theta = 0. If sin2θ=0\sin 2\theta = 0, then 2θ=nπ2\theta = n\pi, so θ=nπ/2\theta = n\pi/2. If θ=nπ/2\theta = n\pi/2, then cosθ\cos \theta can be 0,1,10, 1, -1. However, we need cosθ=1/2\cos \theta = -1/2. This is not possible for θ=nπ/2\theta = n\pi/2. So, this subcase also yields no solution.

Since both subcases for a+b+c=0a+b+c=0 lead to contradictions, there are no solutions for θ\theta when a+b+c=0a+b+c=0.

Therefore, the only valid solutions come from a=b=ca=b=c, which gives θ=2kπ\theta = 2k\pi, where kZk \in Z.

The final answer is (a)\boxed{\text{(a)}}.