Solveeit Logo

Question

Question: If *A, B, C, D* are the smallest positive angles in ascending order of magnitude which have their si...

If A, B, C, D are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k, then the value of 4sinA2+3sinB2+2sinC2+sinD24sin\frac{A}{2}+3sin\frac{B}{2}+2sin\frac{C}{2}+sin\frac{D}{2} is equal to :

A

21k2\sqrt{1-k}

B

1+k\sqrt{1+k}

C

2k2\sqrt{k}

D

None of these

Answer

None of these

Explanation

Solution

To solve this problem, we need to first identify the angles A, B, C, D based on the given conditions and then substitute them into the expression.

  1. Identify the angles A, B, C, D:
    We are given that A, B, C, D are the smallest positive angles in ascending order of magnitude such that their sines are equal to a positive quantity kk.
    Let sinx=k\sin x = k. Since k>0k > 0, the angles must lie in quadrants where sine is positive (Quadrant I or II).
    Let A be the principal value, so A=arcsinkA = \arcsin k. Since A is the smallest positive angle, 0<A<π20 < A < \frac{\pi}{2}.

    The general solution for sinx=k\sin x = k is x=nπ+(1)nAx = n\pi + (-1)^n A, where nn is an integer.
    The smallest positive angles in ascending order are:

    • For n=0n=0: A=0π+(1)0A=AA = 0\cdot\pi + (-1)^0 A = A.
    • For n=1n=1: B=1π+(1)1A=πAB = 1\cdot\pi + (-1)^1 A = \pi - A.
    • For n=2n=2: C=2π+(1)2A=2π+AC = 2\cdot\pi + (-1)^2 A = 2\pi + A.
    • For n=3n=3: D=3π+(1)3A=3πAD = 3\cdot\pi + (-1)^3 A = 3\pi - A.

    These angles are indeed in ascending order: A<πA<2π+A<3πAA < \pi - A < 2\pi + A < 3\pi - A for A(0,π/2)A \in (0, \pi/2).

  2. Substitute the angles into the expression:
    The expression to evaluate is E=4sinA2+3sinB2+2sinC2+sinD2E = 4\sin\frac{A}{2}+3\sin\frac{B}{2}+2\sin\frac{C}{2}+sin\frac{D}{2}.
    Substitute B=πAB = \pi - A, C=2π+AC = 2\pi + A, and D=3πAD = 3\pi - A:
    E=4sinA2+3sin(πA2)+2sin(2π+A2)+sin(3πA2)E = 4\sin\frac{A}{2} + 3\sin\left(\frac{\pi - A}{2}\right) + 2\sin\left(\frac{2\pi + A}{2}\right) + \sin\left(\frac{3\pi - A}{2}\right)
    E=4sinA2+3sin(π2A2)+2sin(π+A2)+sin(3π2A2)E = 4\sin\frac{A}{2} + 3\sin\left(\frac{\pi}{2} - \frac{A}{2}\right) + 2\sin\left(\pi + \frac{A}{2}\right) + \sin\left(\frac{3\pi}{2} - \frac{A}{2}\right)

  3. Apply trigonometric identities:
    We use the following identities:

    • sin(π2θ)=cosθ\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta
    • sin(π+θ)=sinθ\sin(\pi + \theta) = -\sin\theta
    • sin(3π2θ)=cosθ\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos\theta

    Applying these identities with θ=A2\theta = \frac{A}{2}:
    E=4sinA2+3cosA2+2(sinA2)+(cosA2)E = 4\sin\frac{A}{2} + 3\cos\frac{A}{2} + 2\left(-\sin\frac{A}{2}\right) + \left(-\cos\frac{A}{2}\right)
    E=4sinA2+3cosA22sinA2cosA2E = 4\sin\frac{A}{2} + 3\cos\frac{A}{2} - 2\sin\frac{A}{2} - \cos\frac{A}{2}

  4. Combine like terms:
    E=(42)sinA2+(31)cosA2E = (4-2)\sin\frac{A}{2} + (3-1)\cos\frac{A}{2}
    E=2sinA2+2cosA2E = 2\sin\frac{A}{2} + 2\cos\frac{A}{2}
    E=2(sinA2+cosA2)E = 2\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)

  5. Express in terms of k:
    We know the identity (sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+sin(2θ)(\sin\theta + \cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 1 + \sin(2\theta).
    Let θ=A2\theta = \frac{A}{2}. Then 2θ=A2\theta = A.
    (sinA2+cosA2)2=1+sinA\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)^2 = 1 + \sin A
    Since 0<A<π20 < A < \frac{\pi}{2}, it follows that 0<A2<π40 < \frac{A}{2} < \frac{\pi}{4}. In this range, both sinA2\sin\frac{A}{2} and cosA2\cos\frac{A}{2} are positive.
    Therefore, sinA2+cosA2=1+sinA\sin\frac{A}{2} + \cos\frac{A}{2} = \sqrt{1 + \sin A}.
    Given that sinA=k\sin A = k:
    sinA2+cosA2=1+k\sin\frac{A}{2} + \cos\frac{A}{2} = \sqrt{1 + k}

  6. Final result:
    Substitute this back into the expression for E:
    E=2(sinA2+cosA2)=21+kE = 2\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right) = 2\sqrt{1 + k}

Comparing this result with the given options: (A) 21k2\sqrt{1-k} (B) 1+k\sqrt{1+k} (C) 2k2\sqrt{k} (D) None of these

Our calculated value is 21+k2\sqrt{1+k}, which is not exactly matched by any of the options (A), (B), or (C). Option (B) is 1+k\sqrt{1+k}, which is half of our result. Therefore, the correct option is (D) None of these.