Question
Question: If A + B + C = 180 then the value of tanA + tanB + tanC is :...
If A + B + C = 180 then the value of tanA + tanB + tanC is :

A
≥ 3√3
B
≥ 2√3
C
3√3
D
2√3
Answer
≥ 3√3
Explanation
Solution
Given A + B + C = 180°. This implies tanA+tanB+tanC=tanAtanBtanC. Assuming A, B, C are acute angles, tanA,tanB,tanC>0. By AM-GM inequality: 3tanA+tanB+tanC≥3tanAtanBtanC Let S=tanA+tanB+tanC. Then S=tanAtanBtanC. 3S≥3S Cubing both sides: 27S3≥S⟹S3−27S≥0⟹S(S2−27)≥0. Since S>0, we have S2−27≥0⟹S2≥27⟹S≥27=33. Thus, tanA+tanB+tanC≥33.