Solveeit Logo

Question

Question: If A + B + C = 180 then the value of tanA + tanB + tanC is :...

If A + B + C = 180 then the value of tanA + tanB + tanC is :

A

≥ 3√3

B

≥ 2√3

C

3√3

D

2√3

Answer

≥ 3√3

Explanation

Solution

Given A + B + C = 180°. This implies tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \tan B \tan C. Assuming A, B, C are acute angles, tanA,tanB,tanC>0\tan A, \tan B, \tan C > 0. By AM-GM inequality: tanA+tanB+tanC3tanAtanBtanC3\frac{\tan A + \tan B + \tan C}{3} \ge \sqrt[3]{\tan A \tan B \tan C} Let S=tanA+tanB+tanCS = \tan A + \tan B + \tan C. Then S=tanAtanBtanCS = \tan A \tan B \tan C. S3S3\frac{S}{3} \ge \sqrt[3]{S} Cubing both sides: S327S    S327S0    S(S227)0\frac{S^3}{27} \ge S \implies S^3 - 27S \ge 0 \implies S(S^2 - 27) \ge 0. Since S>0S > 0, we have S2270    S227    S27=33S^2 - 27 \ge 0 \implies S^2 \ge 27 \implies S \ge \sqrt{27} = 3\sqrt{3}. Thus, tanA+tanB+tanC33\tan A + \tan B + \tan C \ge 3\sqrt{3}.