Question
Question: $\frac{{}^nC_0}{2}-\frac{{}^nC_1}{6}+\frac{{}^nC_2}{10}-\frac{{}^nC_3}{14}+.....+\frac{(-1)^n {}^nC_...
2nC0−6nC1+10nC2−14nC3+.....+(4n+2)(−1)nnCn, n∈N is equal to :

3⋅5⋅7.....(2n−1)(2n+1)2n−1n!
1⋅3⋅5⋅7.....(2n−3)(2n−1)2nn!
3⋅5.....(2n−1)(2n+1)2nn!
1⋅3⋅5.....(2n−3)(2n−1)2n(n−1)!
3⋅5⋅7.....(2n−1)(2n+1)2n−1n!
Solution
We wish to evaluate
S=2nC0−6nC1+10nC2−14nC3+⋯+4n+2(−1)nnCn.
Notice that
4k+2=2(2k+1).
Thus we can write
S=21∑k=0n2k+1(−1)k(kn).
Recall that
2k+11=∫01x2kdx.
Then,
S=21∑k=0n(−1)k(kn)∫01x2kdx=21∫01∑k=0n(−1)k(kn)x2kdx.
But
∑k=0n(−1)k(kn)x2k=(1−x2)n.
Hence,
S=21∫01(1−x2)ndx.
Letting u=x2 so that du=2xdx or dx=2udu and changing limits (x=0⇒u=0, x=1⇒u=1), we get:
∫01(1−x2)ndx=21∫01u−1/2(1−u)ndu.
This is the Beta integral:
21B(21,n+1)=21⋅Γ(n+23)Γ(1/2)Γ(n+1).
Thus,
S=21⋅21⋅Γ(n+23)Γ(1/2)Γ(n+1)=4Γ(n+23)Γ(1/2)n!.
Using the relation
Γ(n+23)=2n+1(2n+1)!!πandΓ(1/2)=π,
we have:
S=4(2n+1(2n+1)!!π)πn!=4(2n+1)!!2n+1n!=(2n+1)!!2n−1n!.
Since
(2n+1)!!=1⋅3⋅5⋯(2n+1),
we can write the final answer as
3⋅5⋅7⋯(2n−1)(2n+1)2n−1n!.