Solveeit Logo

Question

Question: $\frac{{}^nC_0}{2}-\frac{{}^nC_1}{6}+\frac{{}^nC_2}{10}-\frac{{}^nC_3}{14}+.....+\frac{(-1)^n {}^nC_...

nC02nC16+nC210nC314+.....+(1)nnCn(4n+2)\frac{{}^nC_0}{2}-\frac{{}^nC_1}{6}+\frac{{}^nC_2}{10}-\frac{{}^nC_3}{14}+.....+\frac{(-1)^n {}^nC_n}{(4n+2)}, nNn \in N is equal to :

A

2n1n!357.....(2n1)(2n+1)\frac{2^{n-1} n!}{3 \cdot 5 \cdot 7.....(2n-1)(2n+1)}

B

2nn!1357.....(2n3)(2n1)\frac{2^n n!}{1 \cdot 3 \cdot 5 \cdot 7.....(2n-3)(2n-1)}

C

2nn!35.....(2n1)(2n+1)\frac{2^n n!}{3 \cdot 5.....(2n-1)(2n+1)}

D

2n(n1)!135.....(2n3)(2n1)\frac{2^n (n-1)!}{1 \cdot 3 \cdot 5.....(2n-3)(2n-1)}

Answer

2n1n!357.....(2n1)(2n+1)\frac{2^{n-1} n!}{3 \cdot 5 \cdot 7.....(2n-1)(2n+1)}

Explanation

Solution

We wish to evaluate

S=nC02nC16+nC210nC314++(1)nnCn4n+2.S=\frac{{}^nC_0}{2}-\frac{{}^nC_1}{6}+\frac{{}^nC_2}{10}-\frac{{}^nC_3}{14}+\cdots+\frac{(-1)^n\,{}^nC_n}{4n+2}.

Notice that

4k+2=2(2k+1).4k+2=2(2k+1).

Thus we can write

S=12k=0n(1)k(nk)2k+1.S=\frac{1}{2}\sum_{k=0}^n\frac{(-1)^k\binom{n}{k}}{2k+1}.

Recall that

12k+1=01x2kdx.\frac{1}{2k+1}=\int_0^1 x^{2k}\,dx.

Then,

S=12k=0n(1)k(nk)01x2kdx=1201k=0n(1)k(nk)x2kdx.S=\frac{1}{2}\sum_{k=0}^n (-1)^k\binom{n}{k}\int_0^1 x^{2k}\,dx =\frac{1}{2}\int_0^1\sum_{k=0}^n(-1)^k\binom{n}{k}x^{2k}\,dx.

But

k=0n(1)k(nk)x2k=(1x2)n.\sum_{k=0}^n(-1)^k\binom{n}{k}x^{2k} = (1-x^2)^n.

Hence,

S=1201(1x2)ndx.S=\frac{1}{2}\int_0^1 (1-x^2)^n\,dx.

Letting u=x2u=x^2 so that du=2xdxdu = 2x\,dx or dx=du2udx = \frac{du}{2\sqrt{u}} and changing limits (x=0u=0x=0 \Rightarrow u=0, x=1u=1x=1 \Rightarrow u=1), we get:

01(1x2)ndx=1201u1/2(1u)ndu.\int_0^1(1-x^2)^n\,dx=\frac{1}{2}\int_0^1 u^{-1/2}(1-u)^n\,du.

This is the Beta integral:

12B(12,n+1)=12Γ(1/2)Γ(n+1)Γ(n+32).\frac{1}{2} B\left(\frac{1}{2}, n+1\right) = \frac{1}{2}\cdot\frac{\Gamma(1/2)\Gamma(n+1)}{\Gamma\left(n+\frac{3}{2}\right)}.

Thus,

S=1212Γ(1/2)Γ(n+1)Γ(n+32)=Γ(1/2)n!4Γ(n+32).S=\frac{1}{2}\cdot \frac{1}{2}\cdot\frac{\Gamma(1/2)\Gamma(n+1)}{\Gamma\left(n+\frac{3}{2}\right)} =\frac{\Gamma(1/2)\, n!}{4\, \Gamma\left(n+\frac{3}{2}\right)}.

Using the relation

Γ(n+32)=(2n+1)!!2n+1πandΓ(1/2)=π,\Gamma\left(n+\frac{3}{2}\right)=\frac{(2n+1)!!}{2^{n+1}}\sqrt{\pi} \quad\text{and}\quad \Gamma(1/2)=\sqrt{\pi},

we have:

S=πn!4((2n+1)!!2n+1π)=2n+1n!4(2n+1)!!=2n1n!(2n+1)!!.S=\frac{\sqrt{\pi}\, n!}{4\left(\frac{(2n+1)!!}{2^{n+1}}\sqrt{\pi}\right)} =\frac{2^{n+1}n!}{4\,(2n+1)!!} =\frac{2^{n-1}n!}{(2n+1)!!}.

Since

(2n+1)!!=135(2n+1),(2n+1)!!=1\cdot 3 \cdot 5 \cdots (2n+1),

we can write the final answer as

2n1n!357(2n1)(2n+1).\frac{2^{n-1}n!}{3\cdot5\cdot7\cdots(2n-1)(2n+1)}.