Solveeit Logo

Question

Question: \[3 + \frac{5}{1!} + \frac{7}{2!} + \frac{9}{3!} + .....\infty =\]...

3+51!+72!+93!+.....=3 + \frac{5}{1!} + \frac{7}{2!} + \frac{9}{3!} + .....\infty =

A

3e3e

B

5e5e

C

5e15e - 1

D

None of these

Answer

5e5e

Explanation

Solution

4e+16\frac{4e + 1}{6}

21!loge2+222!(loge2)2+233!(loge2)3+.....=1+logex1!+(logex)22!+(logex)33!+.....=\frac{2}{1!}\log_{e}2 + \frac{2^{2}}{2!}(\log_{e}2)^{2} + \frac{2^{3}}{3!}(\log_{e}2)^{3} + .....\infty = 1 + \frac{\log_{e}x}{1!} + \frac{(\log_{e}x)^{2}}{2!} + \frac{(\log_{e}x)^{3}}{3!} + .....\infty =

Now, sumlogex\log_{e}x

xx.