Solveeit Logo

Question

Question: For $k = 1, 2, ..., $ let $f_k$ be the number of times $\sin(\frac{k \pi x}{2})$ attains its maxim...

For k=1,2,...,k = 1, 2, ..., let fkf_k be the number of times

sin(kπx2)\sin(\frac{k \pi x}{2})

attains its maximum value on the interval x[0,1]x \in [0, 1]. Compute

limkfkk\lim_{k \to \infty} \frac{f_k}{k}.

Answer

1/4

Explanation

Solution

To find the number of times sin(kπx2)\sin(\frac{k \pi x}{2}) attains its maximum value on the interval x[0,1]x \in [0, 1], we first identify the maximum value of the sine function, which is 1.

The sine function attains its maximum value when its argument is of the form π2+2nπ\frac{\pi}{2} + 2n\pi, where nn is an integer.

So, we set the argument equal to this form:

kπx2=π2+2nπ\frac{k \pi x}{2} = \frac{\pi}{2} + 2n\pi

Divide by π\pi:

kx2=12+2n\frac{kx}{2} = \frac{1}{2} + 2n

Multiply by 2:

kx=1+4nkx = 1 + 4n

Solve for xx:

x=1+4nkx = \frac{1 + 4n}{k}

Now, we apply the given interval constraint x[0,1]x \in [0, 1]:

01+4nk10 \le \frac{1 + 4n}{k} \le 1

Since kk is a positive integer (k=1,2,...k=1, 2, ...), we can multiply the inequality by kk without changing its direction:

01+4nk0 \le 1 + 4n \le k

We need to find the number of integer values of nn that satisfy this compound inequality.

From the left side of the inequality:

1+4n01 + 4n \ge 0

4n14n \ge -1

n14n \ge -\frac{1}{4}

Since nn must be an integer, the smallest possible value for nn is 00.

From the right side of the inequality:

1+4nk1 + 4n \le k

4nk14n \le k - 1

nk14n \le \frac{k - 1}{4}

Since nn must be an integer, the largest possible value for nn is k14\lfloor \frac{k - 1}{4} \rfloor.

So, the integer values of nn for which the maximum is attained are 0,1,2,,k140, 1, 2, \dots, \lfloor \frac{k - 1}{4} \rfloor.

The number of such values, fkf_k, is given by:

fk=(k14)0+1=k14+1f_k = \left( \lfloor \frac{k - 1}{4} \rfloor \right) - 0 + 1 = \lfloor \frac{k - 1}{4} \rfloor + 1

We need to compute the limit limkfkk\lim_{k \to \infty} \frac{f_k}{k}.

limkk14+1k\lim_{k \to \infty} \frac{\lfloor \frac{k - 1}{4} \rfloor + 1}{k}

We use the property of the floor function: for any real number yy, y1<yyy-1 < \lfloor y \rfloor \le y.

Let y=k14y = \frac{k-1}{4}. Then:

k141<k14k14\frac{k-1}{4} - 1 < \lfloor \frac{k-1}{4} \rfloor \le \frac{k-1}{4}

Adding 1 to all parts of the inequality:

k141+1<k14+1k14+1\frac{k-1}{4} - 1 + 1 < \lfloor \frac{k-1}{4} \rfloor + 1 \le \frac{k-1}{4} + 1

k14<fkk1+44\frac{k-1}{4} < f_k \le \frac{k-1+4}{4}

k14<fkk+34\frac{k-1}{4} < f_k \le \frac{k+3}{4}

Now, divide all parts of the inequality by kk (since k>0k > 0):

k14k<fkkk+34k\frac{k-1}{4k} < \frac{f_k}{k} \le \frac{k+3}{4k}

Finally, take the limit as kk \to \infty:

limkk14k=limk11k4=104=14\lim_{k \to \infty} \frac{k-1}{4k} = \lim_{k \to \infty} \frac{1 - \frac{1}{k}}{4} = \frac{1 - 0}{4} = \frac{1}{4}

limkk+34k=limk1+3k4=1+04=14\lim_{k \to \infty} \frac{k+3}{4k} = \lim_{k \to \infty} \frac{1 + \frac{3}{k}}{4} = \frac{1 + 0}{4} = \frac{1}{4}

By the Squeeze Theorem, since both the lower and upper bounds approach 14\frac{1}{4}, the limit of fkk\frac{f_k}{k} must also be 14\frac{1}{4}.