Solveeit Logo

Question

Question: Find the volume of the solid cut from the first octant by the surface $z=4-x^2-y$....

Find the volume of the solid cut from the first octant by the surface z=4x2yz=4-x^2-y.

Answer

The volume of the solid is 12815\frac{128}{15}.

Explanation

Solution

The volume VV is given by the double integral of the height function z=4x2yz = 4-x^2-y over the region DD in the xyxy-plane defined by x0x \ge 0, y0y \ge 0, and z0z \ge 0. The condition z0z \ge 0 implies 4x2y04-x^2-y \ge 0, or y4x2y \le 4-x^2.

The region of integration DD is thus described by x0x \ge 0, y0y \ge 0, and y4x2y \le 4-x^2. This region is in the first quadrant, bounded by the x-axis, the y-axis, and the parabola y=4x2y = 4-x^2. The x-intercept of this parabola is found by setting y=0y=0, which gives x2=4x^2=4, so x=2x=2 (since we are in the first octant).

The limits of integration are 0x20 \le x \le 2 and 0y4x20 \le y \le 4-x^2.

The volume integral is: V=0204x2(4x2y)dydxV = \int_0^2 \int_0^{4-x^2} (4-x^2-y) dy dx

First, integrate with respect to yy: 04x2(4x2y)dy=[(4x2)yy22]04x2\int_0^{4-x^2} (4-x^2-y) dy = \left[(4-x^2)y - \frac{y^2}{2}\right]_0^{4-x^2} =(4x2)(4x2)(4x2)22=(4x2)212(4x2)2=12(4x2)2= (4-x^2)(4-x^2) - \frac{(4-x^2)^2}{2} = (4-x^2)^2 - \frac{1}{2}(4-x^2)^2 = \frac{1}{2}(4-x^2)^2

Now, integrate with respect to xx: V=0212(4x2)2dx=1202(168x2+x4)dxV = \int_0^2 \frac{1}{2}(4-x^2)^2 dx = \frac{1}{2} \int_0^2 (16 - 8x^2 + x^4) dx V=12[16x8x33+x55]02V = \frac{1}{2} \left[16x - \frac{8x^3}{3} + \frac{x^5}{5}\right]_0^2 V=12(16(2)8(2)33+255)V = \frac{1}{2} \left(16(2) - \frac{8(2)^3}{3} + \frac{2^5}{5}\right) V=12(32643+325)V = \frac{1}{2} \left(32 - \frac{64}{3} + \frac{32}{5}\right) V=12(32×1564×5+32×315)V = \frac{1}{2} \left(\frac{32 \times 15 - 64 \times 5 + 32 \times 3}{15}\right) V=12(480320+9615)=12(25615)=12815V = \frac{1}{2} \left(\frac{480 - 320 + 96}{15}\right) = \frac{1}{2} \left(\frac{256}{15}\right) = \frac{128}{15}