Solveeit Logo

Question

Question: Find the sum of the series $\sum_{r=0}^{n} (-1)^r . ^nC_r \left[ \frac{1}{2^r} + \frac{3}{2^{2r}} + ...

Find the sum of the series r=0n(1)r.nCr[12r+322r+723r+1524r+...uptonterms]\sum_{r=0}^{n} (-1)^r . ^nC_r \left[ \frac{1}{2^r} + \frac{3}{2^{2r}} + \frac{7}{2^{3r}} + \frac{15}{2^{4r}} + ... up to n terms \right]

A

0

B

(2n1)n2n2-\frac{(2^n-1)^n}{2^{n^2}}

C

(2n1)n2n2\frac{(2^n-1)^n}{2^{n^2}}

D

1

Answer

(2n1)n2n2-\frac{(2^n-1)^n}{2^{n^2}} for n1n \ge 1, and 00 for n=0n=0. Assuming nn is a positive integer for the context of such problems.

Explanation

Solution

Let the given series be SS. The expression is: S=r=0n(1)r.nCr[12r+322r+723r+1524r+...up to n terms]S = \sum_{r=0}^{n} (-1)^r . ^nC_r \left[ \frac{1}{2^r} + \frac{3}{2^{2r}} + \frac{7}{2^{3r}} + \frac{15}{2^{4r}} + ... \text{up to n terms} \right] The sum inside the bracket, BrB_r, is k=1n2k12kr\sum_{k=1}^{n} \frac{2^k-1}{2^{kr}}. This can be written as a telescoping sum: Br=k=1n(12(k1)r12kr)=112nr=1(12n)rB_r = \sum_{k=1}^{n} \left(\frac{1}{2^{(k-1)r}} - \frac{1}{2^{kr}}\right) = 1 - \frac{1}{2^{nr}} = 1 - \left(\frac{1}{2^n}\right)^r. Substituting back: S=r=0n(1)r.nCr[1(12n)r]S = \sum_{r=0}^{n} (-1)^r . ^nC_r \left[ 1 - \left(\frac{1}{2^n}\right)^r \right] S=r=0n(1)r.nCrr=0n(1)r.nCr(12n)rS = \sum_{r=0}^{n} (-1)^r . ^nC_r - \sum_{r=0}^{n} (-1)^r . ^nC_r \left(\frac{1}{2^n}\right)^r The first sum is (11)n=0(1-1)^n = 0 for n1n \ge 1, and 11 for n=0n=0. The second sum is (112n)n\left(1 - \frac{1}{2^n}\right)^n. For n1n \ge 1, S=0(112n)n=(2n12n)n=(2n1)n2n2S = 0 - \left(1 - \frac{1}{2^n}\right)^n = -\left(\frac{2^n-1}{2^n}\right)^n = -\frac{(2^n-1)^n}{2^{n^2}}. For n=0n=0, S=1(11)0=11=0S = 1 - (1-1)^0 = 1 - 1 = 0.