Solveeit Logo

Question

Question: Differentiate the following with respect to x: $(x^2 + 4x + 1)^3 + (x^3 - 5x - 2)^4$...

Differentiate the following with respect to x:

(x2+4x+1)3+(x35x2)4(x^2 + 4x + 1)^3 + (x^3 - 5x - 2)^4

Answer

3(2x+4)(x^2+4x+1)^2 + 4(3x^2-5)(x^3-5x-2)^3

Explanation

Solution

Differentiate each term using the Chain Rule.

  1. For (x2+4x+1)3(x^2 + 4x + 1)^3:

ddx[(x2+4x+1)3]=3(x2+4x+1)2ddx(x2+4x+1)\frac{d}{dx}\left[(x^2 + 4x + 1)^3\right] = 3(x^2+4x+1)^2 \cdot \frac{d}{dx}(x^2+4x+1)

and

ddx(x2+4x+1)=2x+4\frac{d}{dx}(x^2+4x+1)= 2x+4.

Thus, the derivative is:

3(2x+4)(x2+4x+1)23(2x+4)(x^2+4x+1)^2.

  1. For (x35x2)4(x^3 - 5x - 2)^4:

ddx[(x35x2)4]=4(x35x2)3ddx(x35x2)\frac{d}{dx}\left[(x^3-5x-2)^4\right] = 4(x^3-5x-2)^3 \cdot \frac{d}{dx}(x^3-5x-2)

and

ddx(x35x2)=3x25\frac{d}{dx}(x^3-5x-2)= 3x^2-5.

Thus, the derivative is:

4(3x25)(x35x2)34(3x^2-5)(x^3-5x-2)^3.

Core Explanation

  • Apply the Chain Rule to each term.
  • Differentiate the outer function and multiply by the derivative of the inner function.