Solveeit Logo

Question

Question: Calculate the amount of He (in gm) present in the 10 litre container at 240 atm and 300K. Given valu...

Calculate the amount of He (in gm) present in the 10 litre container at 240 atm and 300K. Given value of "b" for He is 0.08 dm³ mol¯¹. (R = 0.08 atm lit mol' K¯¹)

Answer

2000/9 gm

Explanation

Solution

The van der Waals equation for a real gas is (P+an2V2)(Vnb)=nRT(P + \frac{an^2}{V^2})(V - nb) = nRT. Given that 'a' is not provided and pressure is high, we can approximate the equation to P(Vnb)=nRTP(V - nb) = nRT. We are given: V=10V = 10 L P=240P = 240 atm T=300T = 300 K b=0.08b = 0.08 dm³ mol⁻¹ = 0.080.08 L mol⁻¹ R=0.08R = 0.08 atm L mol⁻¹ K⁻¹

Rearranging the simplified equation to solve for nn: n=PVRT+Pbn = \frac{PV}{RT + Pb}

Calculate the terms: RT=(0.08 atm L mol1 K1)×(300 K)=24 atm L mol1RT = (0.08 \text{ atm L mol}^{-1} \text{ K}^{-1}) \times (300 \text{ K}) = 24 \text{ atm L mol}^{-1} Pb=(240 atm)×(0.08 L mol1)=19.2 atm L mol1Pb = (240 \text{ atm}) \times (0.08 \text{ L mol}^{-1}) = 19.2 \text{ atm L mol}^{-1} PV=(240 atm)×(10 L)=2400 atm LPV = (240 \text{ atm}) \times (10 \text{ L}) = 2400 \text{ atm L}

Substitute these values: n=2400 atm L24 atm L mol1+19.2 atm L mol1=240043.2 mol=5009 moln = \frac{2400 \text{ atm L}}{24 \text{ atm L mol}^{-1} + 19.2 \text{ atm L mol}^{-1}} = \frac{2400}{43.2} \text{ mol} = \frac{500}{9} \text{ mol}

The molar mass of Helium (He) is approximately 4 g/mol. Mass (mm) = n×M=5009 mol×4 g/mol=20009 gn \times M = \frac{500}{9} \text{ mol} \times 4 \text{ g/mol} = \frac{2000}{9} \text{ g}.