Solveeit Logo

Question

Question: $\begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix} = (a^3 + b^3)^2...

a22abb2b2a22ab2abb2a2=(a3+b3)2\begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix} = (a^3 + b^3)^2

Answer

(a3+b3)2(a^3 + b^3)^2

Explanation

Solution

Let the given determinant be DD.

D=a22abb2b2a22ab2abb2a2D = \begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix}

This is a cyclic determinant of the form xyzzxyyzx\begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix}, where x=a2x=a^2, y=2aby=2ab, and z=b2z=b^2.

The value of a 3×33 \times 3 cyclic determinant is given by the formula:

xyzzxyyzx=(x+y+z)(x2+y2+z2xyyzzx)\begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix} = (x+y+z)(x^2+y^2+z^2-xy-yz-zx).

Substitute the values of x,y,zx, y, z:

x+y+z=a2+2ab+b2=(a+b)2x+y+z = a^2 + 2ab + b^2 = (a+b)^2.

x2=(a2)2=a4x^2 = (a^2)^2 = a^4 y2=(2ab)2=4a2b2y^2 = (2ab)^2 = 4a^2b^2 z2=(b2)2=b4z^2 = (b^2)^2 = b^4 xy=a2(2ab)=2a3bxy = a^2(2ab) = 2a^3b yz=(2ab)(b2)=2ab3yz = (2ab)(b^2) = 2ab^3 zx=b2(a2)=a2b2zx = b^2(a^2) = a^2b^2

Now calculate x2+y2+z2xyyzzxx^2+y^2+z^2-xy-yz-zx:

a4+4a2b2+b42a3b2ab3a2b2a^4 + 4a^2b^2 + b^4 - 2a^3b - 2ab^3 - a^2b^2

=a42a3b+(4a2b2a2b2)2ab3+b4= a^4 - 2a^3b + (4a^2b^2 - a^2b^2) - 2ab^3 + b^4

=a42a3b+3a2b22ab3+b4= a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4.

This expression is the expansion of (a2ab+b2)2(a^2 - ab + b^2)^2:

(a2ab+b2)2=((a2+b2)ab)2=(a2+b2)22(a2+b2)(ab)+(ab)2(a^2 - ab + b^2)^2 = ((a^2+b^2) - ab)^2 = (a^2+b^2)^2 - 2(a^2+b^2)(ab) + (ab)^2

=(a4+2a2b2+b4)(2a3b+2ab3)+a2b2= (a^4 + 2a^2b^2 + b^4) - (2a^3b + 2ab^3) + a^2b^2

=a4+2a2b2+b42a3b2ab3+a2b2= a^4 + 2a^2b^2 + b^4 - 2a^3b - 2ab^3 + a^2b^2

=a42a3b+3a2b22ab3+b4= a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4.

So, x2+y2+z2xyyzzx=(a2ab+b2)2x^2+y^2+z^2-xy-yz-zx = (a^2 - ab + b^2)^2.

Now, substitute these back into the determinant formula:

D=(x+y+z)(x2+y2+z2xyyzzx)D = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)

D=(a+b)2(a2ab+b2)2D = (a+b)^2 (a^2 - ab + b^2)^2

D=[(a+b)(a2ab+b2)]2D = [(a+b)(a^2 - ab + b^2)]^2

Recall the sum of cubes formula: a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2).

So, D=(a3+b3)2D = (a^3 + b^3)^2.

The given statement is a22abb2b2a22ab2abb2a2=(a3+b3)2\begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix} = (a^3 + b^3)^2.

Our calculation shows that the determinant is indeed equal to (a3+b3)2(a^3 + b^3)^2.

Thus, the statement is true.