Solveeit Logo

Question

Question: A particle of mass m is released from rest a distance b from a fixed origin of force that attracts t...

A particle of mass m is released from rest a distance b from a fixed origin of force that attracts the particle according to the inverse square law F(x)=kx2F(x) = -kx^{-2}. The time required for the particle to reach the origin is given by π(mb3αK)12\pi (\frac{mb^3}{\alpha K})^{\frac{1}{2}}. The value of α\alpha is:

Answer

8

Explanation

Solution

The problem asks for the value of α\alpha given the time taken for a particle to reach the origin under an inverse square law attractive force.

  1. Set up the equation of motion: The force acting on the particle is F(x)=kx2F(x) = -kx^{-2}. According to Newton's second law, F=maF = ma, so: md2xdt2=kx2m \frac{d^2x}{dt^2} = -kx^{-2}

  2. Express acceleration in terms of velocity and position: We can write d2xdt2=dvdt=dvdxdxdt=vdvdx\frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = v \frac{dv}{dx}. Substituting this into the equation of motion: mvdvdx=kx2mv \frac{dv}{dx} = -kx^{-2}

  3. Integrate to find velocity as a function of position: Separate variables and integrate. The particle is released from rest (v=0v=0) at x=bx=b. 0vmvdv=bxk(x)2dx\int_{0}^{v} mv' dv' = \int_{b}^{x} -k (x')^{-2} dx' 12mv20=k[1x]bx\frac{1}{2}mv^2 - 0 = -k \left[ -\frac{1}{x'} \right]_{b}^{x} 12mv2=k(1x1b)\frac{1}{2}mv^2 = k \left( \frac{1}{x} - \frac{1}{b} \right) 12mv2=kbxbx\frac{1}{2}mv^2 = k \frac{b-x}{bx} v2=2kmbxbxv^2 = \frac{2k}{m} \frac{b-x}{bx}

  4. Determine the sign of velocity and set up the integral for time: Since the particle is attracted to the origin, its position xx decreases with time. Therefore, dxdt\frac{dx}{dt} must be negative. v=dxdt=2kmbxbxv = \frac{dx}{dt} = -\sqrt{\frac{2k}{m}} \sqrt{\frac{b-x}{bx}} Rearrange to find dtdt: dt=m2kbxbxdxdt = -\sqrt{\frac{m}{2k}} \sqrt{\frac{bx}{b-x}} dx

  5. Integrate to find the total time: The particle starts at x=bx=b at t=0t=0 and reaches the origin (x=0x=0) at time TT. T=0Tdt=b0m2kbxbxdxT = \int_{0}^{T} dt = \int_{b}^{0} -\sqrt{\frac{m}{2k}} \sqrt{\frac{bx}{b-x}} dx To simplify the integration, swap the limits and change the sign: T=m2k0bbxbxdxT = \sqrt{\frac{m}{2k}} \int_{0}^{b} \sqrt{\frac{bx}{b-x}} dx

  6. Evaluate the definite integral: Let the integral be I=0bbxbxdxI = \int_{0}^{b} \sqrt{\frac{bx}{b-x}} dx. Use the trigonometric substitution x=bsin2θx = b\sin^2\theta. Then dx=2bsinθcosθdθdx = 2b\sin\theta\cos\theta d\theta. When x=0x=0, θ=0\theta=0. When x=bx=b, θ=π2\theta=\frac{\pi}{2}. bxbx=b(bsin2θ)bbsin2θ=b2sin2θbcos2θ=bsinθcosθ=btanθ\sqrt{\frac{bx}{b-x}} = \sqrt{\frac{b(b\sin^2\theta)}{b-b\sin^2\theta}} = \sqrt{\frac{b^2\sin^2\theta}{b\cos^2\theta}} = \sqrt{b} \frac{\sin\theta}{\cos\theta} = \sqrt{b}\tan\theta. Substitute these into the integral: I=0π/2(btanθ)(2bsinθcosθ)dθI = \int_{0}^{\pi/2} (\sqrt{b}\tan\theta) (2b\sin\theta\cos\theta) d\theta I=0π/22bbsin2θdθI = \int_{0}^{\pi/2} 2b\sqrt{b} \sin^2\theta d\theta Using the identity sin2θ=1cos(2θ)2\sin^2\theta = \frac{1-\cos(2\theta)}{2}: I=2bb0π/21cos(2θ)2dθI = 2b\sqrt{b} \int_{0}^{\pi/2} \frac{1-\cos(2\theta)}{2} d\theta I=bb[θ12sin(2θ)]0π/2I = b\sqrt{b} \left[ \theta - \frac{1}{2}\sin(2\theta) \right]_{0}^{\pi/2} I=bb[(π212sin(π))(012sin(0))]I = b\sqrt{b} \left[ \left(\frac{\pi}{2} - \frac{1}{2}\sin(\pi)\right) - \left(0 - \frac{1}{2}\sin(0)\right) \right] I=bb[π200+0]=πb3/22I = b\sqrt{b} \left[ \frac{\pi}{2} - 0 - 0 + 0 \right] = \frac{\pi b^{3/2}}{2}

  7. Substitute the integral result back into the time expression: T=m2kπb3/22T = \sqrt{\frac{m}{2k}} \cdot \frac{\pi b^{3/2}}{2} T=π22mkb3/2T = \frac{\pi}{2\sqrt{2}} \sqrt{\frac{m}{k}} b^{3/2} To match the given form, group terms under the square root: T=πmb38kT = \pi \sqrt{\frac{m b^3}{8k}} T=π(mb38k)12T = \pi \left( \frac{mb^3}{8k} \right)^{\frac{1}{2}}

  8. Compare with the given formula to find α\alpha: The given formula is T=π(mb3αK)12T = \pi \left( \frac{mb^3}{\alpha K} \right)^{\frac{1}{2}}. Comparing our derived expression with the given formula, assuming K=kK=k: α=8\alpha = 8