Solveeit Logo

Question

Question: A particle of mass $10^{-2}$ kg is moving along the positive X-axis under the influence of a force $...

A particle of mass 10210^{-2} kg is moving along the positive X-axis under the influence of a force F(x)=k/2x2F(x) = -k/2x^2 where k=102Nm2k = 10^{-2} Nm^2. At time t=0t = 0, it is at x=1.0x = 1.0 m and its velocity v=0v = 0

(a) Find its velocity when it reaches x=0.5x = 0.5 m.

(b) Find the time at which it reaches x=0.25x = 0.25 m.(IIT-JEE 1998)

Answer

(a) -1 m/s, (b) π/3+3/4\pi/3 + \sqrt{3}/4 s

Explanation

Solution

Solution: The problem describes a particle of mass m=102m = 10^{-2} kg moving along the positive X-axis under the influence of a force F(x)=k/(2x2)F(x) = -k/(2x^2), where k=102Nm2k = 10^{-2} Nm^2. At t=0t=0, the particle is at x0=1.0x_0 = 1.0 m with velocity v0=0v_0 = 0.

Part (a): Find its velocity when it reaches x=0.5x = 0.5 m. The force is conservative, so we can use the work-energy theorem or conservation of mechanical energy. The work done by the force F(x)F(x) as the particle moves from x1x_1 to x2x_2 is W=x1x2F(x)dxW = \int_{x_1}^{x_2} F(x) dx. According to the work-energy theorem, W=ΔKE=KEfKEiW = \Delta KE = KE_f - KE_i. The initial state is at x0=1.0x_0 = 1.0 m with v0=0v_0 = 0. The initial kinetic energy is KEi=(1/2)mv02=0KE_i = (1/2) m v_0^2 = 0. The final state is at xf=0.5x_f = 0.5 m with velocity vfv_f. The final kinetic energy is KEf=(1/2)mvf2KE_f = (1/2) m v_f^2. The work done is W=1.00.5k2x2dx=k21.00.5x2dx=k2[x1]1.00.5=k2[10.5(11.0)]=k2[2+1]=k2[1]=k2W = \int_{1.0}^{0.5} \frac{-k}{2x^2} dx = -\frac{k}{2} \int_{1.0}^{0.5} x^{-2} dx = -\frac{k}{2} [-x^{-1}]_{1.0}^{0.5} = -\frac{k}{2} [-\frac{1}{0.5} - (-\frac{1}{1.0})] = -\frac{k}{2} [-2 + 1] = -\frac{k}{2} [-1] = \frac{k}{2}. Using the work-energy theorem: W=KEfKEiW = KE_f - KE_i. k2=12mvf20\frac{k}{2} = \frac{1}{2} m v_f^2 - 0. vf2=kmv_f^2 = \frac{k}{m}. Given k=102Nm2k = 10^{-2} Nm^2 and m=102m = 10^{-2} kg, vf2=102102=1v_f^2 = \frac{10^{-2}}{10^{-2}} = 1. So, vf=±1v_f = \pm 1 m/s. The force F(x)=k/(2x2)F(x) = -k/(2x^2) is always negative for x>0x > 0, meaning it acts towards the origin. Since the particle starts at x=1.0x=1.0 m and moves towards x=0.5x=0.5 m, its position is decreasing, which means its velocity must be negative. Thus, the velocity when it reaches x=0.5x = 0.5 m is vf=1v_f = -1 m/s.

Part (b): Find the time at which it reaches x=0.25x = 0.25 m. We need to find the velocity as a function of position first. Using conservation of mechanical energy is convenient. The potential energy U(x)U(x) is given by F(x)=dU/dxF(x) = -dU/dx. U(x)=F(x)dx=k2x2dx=k2x2dx=k2(1x)+C=k2x+CU(x) = -\int F(x) dx = -\int \frac{-k}{2x^2} dx = \frac{k}{2} \int x^{-2} dx = \frac{k}{2} (-\frac{1}{x}) + C = -\frac{k}{2x} + C. Let's set the potential energy to zero at infinity, so C=0C=0. U(x)=k/(2x)U(x) = -k/(2x). The total mechanical energy E=KE+PE=12mv2+U(x)E = KE + PE = \frac{1}{2} m v^2 + U(x). The initial energy at t=0t=0, x0=1.0x_0 = 1.0 m, v0=0v_0 = 0: E0=12m(0)2+U(1.0)=0k2(1.0)=k2E_0 = \frac{1}{2} m (0)^2 + U(1.0) = 0 - \frac{k}{2(1.0)} = -\frac{k}{2}. By conservation of energy, the total energy EE is constant and equal to E0E_0. 12mv2+U(x)=k2\frac{1}{2} m v^2 + U(x) = -\frac{k}{2}. 12mv2k2x=k2\frac{1}{2} m v^2 - \frac{k}{2x} = -\frac{k}{2}. 12mv2=k2xk2=k2(1x1)\frac{1}{2} m v^2 = \frac{k}{2x} - \frac{k}{2} = \frac{k}{2} (\frac{1}{x} - 1). v2=km(1x1)v^2 = \frac{k}{m} (\frac{1}{x} - 1). Since the particle is moving towards the origin from x=1.0x=1.0, the velocity is negative: v=dxdt=km(1x1)v = \frac{dx}{dt} = -\sqrt{\frac{k}{m} (\frac{1}{x} - 1)}. We need to find the time taken to go from x0=1.0x_0 = 1.0 m to xf=0.25x_f = 0.25 m. dt=dxv=dxkm(1x1)=mkdx1xx=mkx1xdxdt = \frac{dx}{v} = \frac{dx}{-\sqrt{\frac{k}{m} (\frac{1}{x} - 1)}} = -\sqrt{\frac{m}{k}} \frac{dx}{\sqrt{\frac{1-x}{x}}} = -\sqrt{\frac{m}{k}} \frac{\sqrt{x}}{\sqrt{1-x}} dx. Integrate from t=0t=0 to tt and from x=1.0x=1.0 to x=0.25x=0.25: 0tdt=1.00.25mkx1xdx\int_0^t dt = \int_{1.0}^{0.25} -\sqrt{\frac{m}{k}} \frac{\sqrt{x}}{\sqrt{1-x}} dx. t=mk1.00.25x1xdxt = -\sqrt{\frac{m}{k}} \int_{1.0}^{0.25} \frac{\sqrt{x}}{\sqrt{1-x}} dx. Substitute m=102m = 10^{-2} and k=102k = 10^{-2}, so m/k=1=1\sqrt{m/k} = \sqrt{1} = 1. t=1.00.25x1xdxt = - \int_{1.0}^{0.25} \frac{\sqrt{x}}{\sqrt{1-x}} dx. Let's evaluate the integral x1xdx\int \frac{\sqrt{x}}{\sqrt{1-x}} dx. Substitute x=sin2θx = \sin^2 \theta. Then dx=2sinθcosθdθdx = 2 \sin \theta \cos \theta d\theta. x=sinθ\sqrt{x} = \sin \theta and 1x=1sin2θ=cosθ\sqrt{1-x} = \sqrt{1-\sin^2 \theta} = \cos \theta (for x[0,1)x \in [0, 1)). sinθcosθ(2sinθcosθ)dθ=2sin2θdθ=(1cos2θ)dθ=θ12sin2θ+C=θsinθcosθ+C\int \frac{\sin \theta}{\cos \theta} (2 \sin \theta \cos \theta) d\theta = \int 2 \sin^2 \theta d\theta = \int (1 - \cos 2\theta) d\theta = \theta - \frac{1}{2} \sin 2\theta + C = \theta - \sin \theta \cos \theta + C. Substitute back x=sin2θx = \sin^2 \theta, so θ=arcsin(x)\theta = \arcsin(\sqrt{x}). The integral is arcsin(x)x1x+C\arcsin(\sqrt{x}) - \sqrt{x}\sqrt{1-x} + C. Now evaluate the definite integral from x=1.0x=1.0 to x=0.25x=0.25. When x=1.0x=1.0, x=1\sqrt{x}=1, arcsin(1)=π/2\arcsin(1) = \pi/2. x1x=1×0=0\sqrt{x}\sqrt{1-x} = 1 \times 0 = 0. Value is π/2\pi/2. When x=0.25x=0.25, x=0.5\sqrt{x}=0.5, arcsin(0.5)=π/6\arcsin(0.5) = \pi/6. x1x=0.5×10.25=0.5×0.75=0.5×3/2=3/4\sqrt{x}\sqrt{1-x} = 0.5 \times \sqrt{1-0.25} = 0.5 \times \sqrt{0.75} = 0.5 \times \sqrt{3}/2 = \sqrt{3}/4. Value is π/63/4\pi/6 - \sqrt{3}/4. The definite integral 1.00.25x1xdx=[arcsin(x)x1x]1.00.25\int_{1.0}^{0.25} \frac{\sqrt{x}}{\sqrt{1-x}} dx = [\arcsin(\sqrt{x}) - \sqrt{x}\sqrt{1-x}]_{1.0}^{0.25} =(arcsin(0.25)0.2510.25)(arcsin(1.0)1.011.0)= (\arcsin(\sqrt{0.25}) - \sqrt{0.25}\sqrt{1-0.25}) - (\arcsin(\sqrt{1.0}) - \sqrt{1.0}\sqrt{1-1.0}) =(arcsin(0.5)0.5×0.75)(arcsin(1)1×0)= (\arcsin(0.5) - 0.5 \times \sqrt{0.75}) - (\arcsin(1) - 1 \times 0) =(π/60.5×3/2)(π/20)= (\pi/6 - 0.5 \times \sqrt{3}/2) - (\pi/2 - 0) =π/63/4π/2=(π3π)/63/4=2π/63/4=π/33/4= \pi/6 - \sqrt{3}/4 - \pi/2 = (\pi - 3\pi)/6 - \sqrt{3}/4 = -2\pi/6 - \sqrt{3}/4 = -\pi/3 - \sqrt{3}/4. The time t=×(π/33/4)=π/3+3/4t = - \times (-\pi/3 - \sqrt{3}/4) = \pi/3 + \sqrt{3}/4.

The final answer is π/3+3/4\pi/3 + \sqrt{3}/4 seconds.

Explanation of the solution: (a) Use the work-energy theorem xixfF(x)dx=12mvf212mvi2\int_{x_i}^{x_f} F(x) dx = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2. Calculate the integral of the force from x=1.0x=1.0 m to x=0.5x=0.5 m. Set vi=0v_i=0 at xi=1.0x_i=1.0 m and solve for vfv_f at xf=0.5x_f=0.5 m. Determine the sign of the velocity based on the direction of motion. (b) Use the definition of velocity v=dx/dtv = dx/dt. From energy conservation, find the expression for v(x)v(x). Separate variables to get dt=dx/v(x)dt = dx/v(x). Integrate dtdt from t=0t=0 to tt and dxdx from x=1.0x=1.0 m to x=0.25x=0.25 m. Evaluate the definite integral using an appropriate substitution (like x=sin2θx=\sin^2 \theta).