Solveeit Logo

Question

Question: A particle moves along a vertical circle of radius r with a velocity $\sqrt{7gr}$ at its bottom poin...

A particle moves along a vertical circle of radius r with a velocity 7gr\sqrt{7gr} at its bottom point A. If TA,TB,TCT_A, T_B, T_C and TDT_D represent tensions at A, B, C and D respectively, then

A

TBTDT_B \neq T_D

B

TCTA=6mgT_C - T_A = 6mg

C

TATC=6mgT_A - T_C = 6mg

D

TA=TCT_A = T_C

Answer

(c) TATC=6mgT_A - T_C = 6mg

Explanation

Solution

  1. Determine speeds using energy conservation:

    • At A (bottom), given:

      vA=7gr.v_A = \sqrt{7gr}.
    • Let A be zero potential energy. Then at:

      • B (rightmost, height = r): 12mvB2=12mvA2mgrvB2=7gr2gr=5gr.\frac{1}{2}mv_B^2 = \frac{1}{2}mv_A^2 - mg\,r \quad \Rightarrow \quad v_B^2 = 7gr - 2gr = 5gr.
      • C (top, height = 2r): vC2=7gr4gr=3gr.v_C^2 = 7gr - 4gr = 3gr.
      • D (leftmost, height = r): vD2=5gr(same as B).v_D^2 = 5gr \quad (\text{same as B}).
  2. Apply radial force equations (centripetal force requirement):

    • At A (bottom):
      Here tension TAT_A acts upward, weight mgmg acts downward. The net upward force provides centripetal acceleration: TAmg=mvA2r=m(7gr)r=7mgTA=8mg.T_A - mg = \frac{mv_A^2}{r} = \frac{m(7gr)}{r} = 7mg \quad \Rightarrow \quad T_A = 8mg.
    • At B (rightmost):
      At B, the radius is horizontal. Tension TBT_B provides the entire centripetal force since mgmg (vertical) is perpendicular to the radial direction: TB=mvB2r=5mg.T_B = \frac{mv_B^2}{r} = 5mg.
    • At C (top):
      Both tension TCT_C and weight mgmg act downward (towards the center): TC+mg=mvC2r=3mgTC=2mg.T_C + mg = \frac{mv_C^2}{r} = 3mg \quad \Rightarrow \quad T_C = 2mg.
    • At D (leftmost):
      Similar to B (only tension provides centripetal force): TD=mvD2r=5mg.T_D = \frac{mv_D^2}{r} = 5mg.
  3. Compare tensions for the options:

    • (a) TBTDT_B \neq T_D: Actually, TB=TD=5mgT_B = T_D = 5mgFalse.
    • (b) TCTA=6mgT_C - T_A = 6mg: TCTA=2mg8mg=6mgT_C - T_A = 2mg - 8mg = -6mgFalse.
    • (c) TATC=6mgT_A - T_C = 6mg: 8mg2mg=6mg8mg - 2mg = 6mgTrue.
    • (d) TA=TCT_A = T_C: 8mg2mg8mg \neq 2mgFalse.