Solveeit Logo

Question

Question: A parallel plate capacitor has d = 1 mm and C = 1 F with no medium inside will have :...

A parallel plate capacitor has d = 1 mm and C = 1 F with no medium inside will have :

A

Area = 36 π\pi x 10610^6

B

Area = 4 π\pi × 10610^6

C

Area = 6 π\pi× 10610^6

D

Area = π\pi × 10610^6

Answer

Area = 36 π\pi x 10610^6

Explanation

Solution

The capacitance of a parallel plate capacitor with no medium inside (vacuum or air) is given by the formula:

C=ϵ0AdC = \frac{\epsilon_0 A}{d}

where CC is the capacitance, ϵ0\epsilon_0 is the permittivity of free space, AA is the area of each plate, and dd is the separation between the plates.

We are given:

C=1C = 1 F d=1d = 1 mm =1×103= 1 \times 10^{-3} m

We need to find the area AA. Rearranging the formula, we get:

A=Cdϵ0A = \frac{C d}{\epsilon_0}

The value of ϵ0\epsilon_0 is approximately 8.854×10128.854 \times 10^{-12} F/m. However, the options are given in terms of π\pi, which suggests using the value of ϵ0\epsilon_0 related to the Coulomb constant k=14πϵ0=9×109Nm2/C2k = \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \, \text{Nm}^2/\text{C}^2.

From this relationship, we can find ϵ0\epsilon_0:

ϵ0=14πk=14π×9×109=136π×109=10936π\epsilon_0 = \frac{1}{4 \pi k} = \frac{1}{4 \pi \times 9 \times 10^9} = \frac{1}{36 \pi \times 10^9} = \frac{10^{-9}}{36 \pi} F/m.

Now, substitute the values of CC, dd, and ϵ0\epsilon_0 into the formula for AA:

A=(1 F)×(1×103 m)10936π F/mA = \frac{(1 \text{ F}) \times (1 \times 10^{-3} \text{ m})}{\frac{10^{-9}}{36 \pi} \text{ F/m}} A=1×10310936π m2A = \frac{1 \times 10^{-3}}{\frac{10^{-9}}{36 \pi}} \text{ m}^2 A=103×36π109 m2A = \frac{10^{-3} \times 36 \pi}{10^{-9}} \text{ m}^2 A=36π×103(9) m2A = 36 \pi \times 10^{-3 - (-9)} \text{ m}^2 A=36π×106 m2A = 36 \pi \times 10^6 \text{ m}^2