Solveeit Logo

Question

Question: A 2MeV proton is moving perpendicular to uniform magnetic field of 2.5T. The magnetic force on the p...

A 2MeV proton is moving perpendicular to uniform magnetic field of 2.5T. The magnetic force on the proton :-

A

8 x 10-12 N

B

4 x 10-12 N

C

16 x 10-12 N

D

2 x 10-12 N

Answer

8 x 10-12 N

Explanation

Solution

To calculate the magnetic force on the proton, we need to determine its velocity first using its kinetic energy.

1. Convert Kinetic Energy to Joules: Given kinetic energy (KE) = 2 MeV. We know that 1 MeV = 10610^6 eV and 1 eV = 1.6×10191.6 \times 10^{-19} J. So, KE = 2×106×1.6×10192 \times 10^6 \times 1.6 \times 10^{-19} J KE = 3.2×10133.2 \times 10^{-13} J

2. Calculate the Velocity of the Proton: The kinetic energy formula is KE=12mv2KE = \frac{1}{2}mv^2, where 'm' is the mass of the proton and 'v' is its velocity. The mass of a proton (mm) = 1.67×10271.67 \times 10^{-27} kg. Rearranging the formula to find 'v': v2=2×KEmv^2 = \frac{2 \times KE}{m} v2=2×3.2×1013 J1.67×1027 kgv^2 = \frac{2 \times 3.2 \times 10^{-13} \text{ J}}{1.67 \times 10^{-27} \text{ kg}} v2=6.4×10131.67×1027v^2 = \frac{6.4 \times 10^{-13}}{1.67 \times 10^{-27}} v23.8323×1014v^2 \approx 3.8323 \times 10^{14} v=3.8323×1014v = \sqrt{3.8323 \times 10^{14}} v1.9576×107 m/sv \approx 1.9576 \times 10^7 \text{ m/s}

3. Calculate the Magnetic Force: The magnetic force (F) on a charged particle moving in a magnetic field is given by the formula: F=qvBsinθF = qvB \sin\theta Where:

  • qq is the charge of the proton = 1.6×10191.6 \times 10^{-19} C
  • vv is the velocity of the proton 1.9576×107\approx 1.9576 \times 10^7 m/s
  • BB is the magnetic field strength = 2.5 T
  • θ\theta is the angle between the velocity vector and the magnetic field. Given that the proton is moving perpendicular to the magnetic field, θ=90\theta = 90^\circ, so sinθ=sin90=1\sin\theta = \sin 90^\circ = 1.

Substitute the values into the formula: F=(1.6×1019 C)×(1.9576×107 m/s)×(2.5 T)×1F = (1.6 \times 10^{-19} \text{ C}) \times (1.9576 \times 10^7 \text{ m/s}) \times (2.5 \text{ T}) \times 1 F=(1.6×2.5×1.9576)×10(19+7)F = (1.6 \times 2.5 \times 1.9576) \times 10^{(-19+7)} F=(4×1.9576)×1012F = (4 \times 1.9576) \times 10^{-12} F=7.8304×1012F = 7.8304 \times 10^{-12} N

Rounding this value, it is approximately 8×10128 \times 10^{-12} N.