Solveeit Logo

Question

Question: A 1 litre vessel contains 2 moles of a vanderwaal's gas. Given data: a = 2.5 atm-L² mole⁻² b = 0.4 ...

A 1 litre vessel contains 2 moles of a vanderwaal's gas.

Given data: a = 2.5 atm-L² mole⁻² b = 0.4 L-mole⁻¹ T = 240 K RT = 20 L-atm mole⁻¹

Identify the correct options about the gas sample :

A

Pressure of gas = 190 atm

B

Compressibility factor = 4.75

C

Attraction forces are dominant in the gaseous sample

D

TB (Boyle temperature) = 75 K

Answer

(A), (B), and (D)

Explanation

Solution

  1. Calculate nRT: nRT = 2 mol * 20 L-atm/mol = 40 L-atm.
  2. Calculate Pressure (P): Using Van der Waals equation, (P+an2V2)(Vnb)=nRT(P + \frac{an^2}{V^2})(V - nb) = nRT. P=nRTVnban2V2=401(2×0.4)2.5×2212=400.210=20010=190P = \frac{nRT}{V-nb} - \frac{an^2}{V^2} = \frac{40}{1 - (2 \times 0.4)} - \frac{2.5 \times 2^2}{1^2} = \frac{40}{0.2} - 10 = 200 - 10 = 190 atm.
  3. Calculate Compressibility Factor (Z): Z=PVnRT=190×140=4.75Z = \frac{PV}{nRT} = \frac{190 \times 1}{40} = 4.75.
  4. Analyze forces: Since Z > 1, repulsive forces dominate.
  5. Calculate Boyle Temperature (TB): TB=aRbT_B = \frac{a}{Rb}. R = RT/T = 20/240 = 1/12 L-atm/mol-K. TB=2.5(1/12)×0.4=2.5×120.4=75T_B = \frac{2.5}{(1/12) \times 0.4} = \frac{2.5 \times 12}{0.4} = 75 K.