Solveeit Logo

Question

Question: A highway curve with a radius of 750 m is banked properly for a car traveling 120 kph. If a 1590 kg ...

A highway curve with a radius of 750 m is banked properly for a car traveling 120 kph. If a 1590 kg car takes the turn at a speed of 230 kph, how much sideways force must the tires exert against the road if the car does not skid ?

A

6230 N

B

5800 N

C

7100 N

D

5150 N

Answer

6230 N

Explanation

Solution

The banking angle θ\theta is determined by the design speed vbv_b using tanθ=vb2/(Rg)\tan \theta = v_b^2 / (Rg). When the car travels at a higher speed vv, it tends to slide outwards. The friction force FfF_f acts down the incline. Resolving forces perpendicular and parallel to the banked surface leads to the equation N=mgcosθ+FfsinθN = mg \cos \theta + F_f \sin \theta and Nsinθ+Ffcosθmgsinθ=mv2/RN \sin \theta + F_f \cos \theta - mg \sin \theta = mv^2/R. Substituting NN and solving for FfF_f yields Ff=mv2RcosθmgsinθF_f = \frac{mv^2}{R} \cos \theta - mg \sin \theta.

First, convert speeds to m/s: vb=120 kph=120×10003600=1003 m/sv_b = 120 \text{ kph} = 120 \times \frac{1000}{3600} = \frac{100}{3} \text{ m/s} v=230 kph=230×10003600=5759 m/sv = 230 \text{ kph} = 230 \times \frac{1000}{3600} = \frac{575}{9} \text{ m/s}

Calculate the banking angle using g10 m/s2g \approx 10 \text{ m/s}^2: tanθ=vb2Rg=(100/3)2750×10=10000/97500=1000067500=427\tan \theta = \frac{v_b^2}{Rg} = \frac{(100/3)^2}{750 \times 10} = \frac{10000/9}{7500} = \frac{10000}{67500} = \frac{4}{27}

From tanθ=427\tan \theta = \frac{4}{27}, we construct a right triangle with opposite side 4 and adjacent side 27. The hypotenuse is 42+272=16+729=745\sqrt{4^2 + 27^2} = \sqrt{16 + 729} = \sqrt{745}. So, sinθ=4745\sin \theta = \frac{4}{\sqrt{745}} and cosθ=27745\cos \theta = \frac{27}{\sqrt{745}}.

Now, calculate the friction force FfF_f using the derived formula: Ff=mv2RcosθmgsinθF_f = \frac{mv^2}{R} \cos \theta - mg \sin \theta m=1590 kgm = 1590 \text{ kg} v=5759 m/sv = \frac{575}{9} \text{ m/s} R=750 mR = 750 \text{ m} g=10 m/s2g = 10 \text{ m/s}^2

Ff=1590×(5759)2750×277451590×10×4745F_f = \frac{1590 \times (\frac{575}{9})^2}{750} \times \frac{27}{\sqrt{745}} - 1590 \times 10 \times \frac{4}{\sqrt{745}} Ff=1590×33062581750×2774563600745F_f = \frac{1590 \times \frac{330625}{81}}{750} \times \frac{27}{\sqrt{745}} - \frac{63600}{\sqrt{745}} Ff=1590750×33062581×2774563600745F_f = \frac{1590}{750} \times \frac{330625}{81} \times \frac{27}{\sqrt{745}} - \frac{63600}{\sqrt{745}} Ff=5325×3306253×174563600745F_f = \frac{53}{25} \times \frac{330625}{3} \times \frac{1}{\sqrt{745}} - \frac{63600}{\sqrt{745}} Ff=69992537451908003745=5091253745F_f = \frac{699925}{3\sqrt{745}} - \frac{190800}{3\sqrt{745}} = \frac{509125}{3\sqrt{745}}

Using decimal approximations for intermediate steps to match the answer's precision: v63.889 m/sv \approx 63.889 \text{ m/s} tanθ0.14815\tan \theta \approx 0.14815, so θ8.426\theta \approx 8.426^\circ sinθ0.14675\sin \theta \approx 0.14675, cosθ0.98925\cos \theta \approx 0.98925

mv2R=1590×(63.889)27508653.39\frac{mv^2}{R} = \frac{1590 \times (63.889)^2}{750} \approx 8653.39 mgsinθ=1590×10×0.146752323.3mg \sin \theta = 1590 \times 10 \times 0.14675 \approx 2323.3

Ff=(8653.39×0.98925)2323.38558.72323.36235.4 NF_f = (8653.39 \times 0.98925) - 2323.3 \approx 8558.7 - 2323.3 \approx 6235.4 \text{ N}

The slight difference from 6230 N is due to rounding in intermediate calculations or the assumed value of gg. The calculated value is very close to the provided answer.