Solveeit Logo

Question

Quantitative Aptitude Question on Number Systems

333333^{3333} divided by 11, then the remainder would be?

Answer

We examine the remainders of powers of 3 when divided by 11:

  • 313(mod11)3^1 \equiv 3 \pmod{11}
  • 329(mod11)3^2 \equiv 9 \pmod{11}
  • 335(mod11)3^3 \equiv 5 \pmod{11}
  • 344(mod11)3^4 \equiv 4 \pmod{11}
  • 351(mod11)3^5 \equiv 1 \pmod{11}

The remainders repeat every 5 terms.

We find the remainder when 333 is divided by 5: 333=5×66+3333 = 5 \times 66 + 3.

Therefore,

3333333275(mod11)3^{3333} \equiv 3^3 \equiv 27 \equiv 5 \pmod{11}

The remainder when 333333^{3333} is divided by 11 is 5.