Solveeit Logo

Question

Question: 2(Xn+1)² - 4Xn+1 + Xn = 0 X1 = 1/2 lim x-->inf (Xn)^a^n = L L is non zero and finite, find a and ...

2(Xn+1)² - 4Xn+1 + Xn = 0 X1 = 1/2 lim x-->inf (Xn)^a^n = L L is non zero and finite, find a and L

Answer

a=0, L=1

Explanation

Solution

The recurrence relation is 2(Xn+1)24Xn+1+Xn=02(X_{n+1})^2 - 4X_{n+1} + X_n = 0. Solving for Xn+1X_{n+1} using the quadratic formula: Xn+1=1±1242XnX_{n+1} = 1 \pm \frac{1}{2}\sqrt{4 - 2X_n}. Given X1=1/2X_1 = 1/2. The branch Xn+1=1+1242XnX_{n+1} = 1 + \frac{1}{2}\sqrt{4 - 2X_n} leads to X21.866X_2 \approx 1.866, and for n2n \ge 2, XnX_n appears to increase and may exceed 2, leading to complex numbers. The branch Xn+1=11242XnX_{n+1} = 1 - \frac{1}{2}\sqrt{4 - 2X_n} with X1=1/2X_1 = 1/2 yields X2=1320.134X_2 = 1 - \frac{\sqrt{3}}{2} \approx 0.134. This sequence is decreasing and bounded below by 0, converging to X=0X=0. We need limn(Xn)an=L\lim_{n \to \infty} (X_n)^{a^n} = L, with L0L \neq 0 and finite. If a=0a=0, then an=0a^n=0 for n1n \ge 1. Since Xn0X_n \to 0 and Xn>0X_n > 0, (Xn)0=1(X_n)^0 = 1. Thus L=1L=1. This gives (a,L)=(0,1)(a, L) = (0, 1). If a0a \neq 0, let Yn=(Xn)anY_n = (X_n)^{a^n}, so ln(Yn)=anln(Xn)\ln(Y_n) = a^n \ln(X_n). As Xn0X_n \to 0, ln(Xn)\ln(X_n) \to -\infty. If a>1a > 1, ana^n \to \infty, so ln(Yn)\ln(Y_n) \to -\infty, Yn0Y_n \to 0, contradicting L0L \neq 0. If 0<a<10 < |a| < 1, an0a^n \to 0. Using XnC(1/4)nX_n \sim C(1/4)^n for large nn, ln(Yn)=an(lnCnln4)0\ln(Y_n) = a^n (\ln C - n \ln 4) \to 0. Thus Yne0=1Y_n \to e^0 = 1, so L=1L=1. This gives (a,L)=(a,1)(a, L) = (a, 1) for a(1,0)(0,1)a \in (-1, 0) \cup (0, 1). If a=1a=-1, ana^n alternates between 11 and 1-1. The limit may not exist or be finite. For uniqueness, the conventional choice is a=0a=0.