Solveeit Logo

Question

Mathematics Question on linear inequalities

2x3<x+5|2x - 3| < |x + 5|, then xx belongs to

A

(3,5)(-3, 5)

B

(5,9)(5, 9)

C

(23,8)\left(-\frac{2}{3}, 8\right)

D

(8,23)\left(-8, \frac{2}{3}\right)

Answer

(23,8)\left(-\frac{2}{3}, 8\right)

Explanation

Solution

We have, 2x3<x+5|2x - 3| < |x + 5| 2x3x+5<0\Rightarrow |2x - 3| - |x + 5| < 0 {32x+x+5<0,x5 32xx5<0,-5,<x32 2x3x<0,x>32\Rightarrow \begin{cases} 3-2x+x+5<0, & \quad \text x \le -5 \\\ 3-2x-x-5<0, & \quad \text -5, < x \le \frac{3}{2} \\\ 2x-3-x<0, & \quad \text x >\frac{3}{2} \end{cases} {x>8,x5  x>\-23,5<x32 x<8,x>32\Rightarrow \begin{cases} x>8, x\le-5 & \quad \text{ } \\\ x>\- \frac{2}{3}, & \quad \text{} -5 < x \le \frac{3}{2} \\\ x<8, & \quad \text{} x > \frac{3}{2} \end{cases} x(23,32)(32,8)\Rightarrow x\in\left(-\frac{2}{3}, \frac{3}{2}\right)\cup\left(\frac{3}{2}, 8\right) x(23,8)\Rightarrow x\in \left(-\frac{2}{3}, 8\right)