Solveeit Logo

Question

Question: \|2x – 3\| \< \|x + 5\|, then x belongs to...

|2x – 3| < |x + 5|, then x belongs to

A

(– 3, 5)

B

(5, 9)

C

(23,8)\left( - \frac{2}{3},8 \right)

D

(8,23)\left( - 8,\frac{2}{3} \right)

Answer

(23,8)\left( - \frac{2}{3},8 \right)

Explanation

Solution

|2x – 3| < |x + 5|

case (i) x < – 5 . . . (1)

3 – 2x < – (x + 5) Ю x > 8 . . . (2)

from (1) & (2) x = f

case (ii) – 5 Ј x < 32\frac{3}{2} . . . (3)

3 – 2x < x + 5 Ю x > 23\frac{- 2}{3} . . . (4)

from (3) & (4) xО(23,32)\left( \frac{- 2}{3},\frac{3}{2} \right)

case (iii) x і 32\frac{3}{2} . . . (5)

2x – 3 < x + 5 Ю x < 8 . . . (6)

from (5) & (6) xО[32,8)\left\lbrack \frac{3}{2},8 \right)

\ combining all cases xО(23,8)\left( \frac{- 2}{3},8 \right)