Solveeit Logo

Question

Question: \(2\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}}\) is independent of x , then...

2tan1x+sin12x1+x22\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}} is independent of x , then

A

x[1,+)x \in \lbrack 1, + \infty)

B

x[1,1]x \in \lbrack - 1,1\rbrack

C

x(,1x \in ( - \infty, - 1]

D

None of these

Answer

x[1,+)x \in \lbrack 1, + \infty)

Explanation

Solution

Let x=tanθx = \tan\theta. Then

sin12x1+x2=sin12tanθ1+tan2θ=sin1(sin2θ)\sin^{- 1}\frac{2x}{1 + x^{2}} = \sin^{- 1}\frac{2\tan\theta}{1 + \tan^{2}\theta} = \sin^{- 1}(\sin 2\theta)

2tan1x+sin12x1+x2=2θ+sin1(sin2θ)\therefore 2\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}} = 2\theta + \sin^{- 1}(\sin 2\theta) If π22θπ2,2tan1x+sin12x1+x2- \frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2},2\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}}

= 2θ+2θ=4tan1x2\theta + 2\theta = 4\tan^{- 1}x \neqindependent of x.

If π2π2θπ2,2tan1x+sin12x1+x2- \frac{\pi}{2} \leq \pi - 2\theta \leq \frac{\pi}{2},2\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}}

= 2θ+sin1[sin(π2θ)]=2θ+π2θ2\theta + \sin^{- 1}\lbrack\sin(\pi - 2\theta)\rbrack = 2\theta + \pi - 2\theta= π\pi = independent of x.

\therefore θ[π4,π4]\theta \notin \left\lbrack - \frac{\pi}{4},\frac{\pi}{4} \right\rbrack butθ[π4,3π4]\theta \in \left\lbrack \frac{\pi}{4},\frac{3\pi}{4} \right\rbrack

and from the principal value of tan1x\tan^{- 1}x.

θ(π2,π2)\theta \in \left( - \frac{\pi}{2},\frac{\pi}{2} \right). Hence, θ(π4,π2)\theta \in \left( \frac{\pi}{4},\frac{\pi}{2} \right)

\therefore θ(π4,π2)\theta \in \left( \frac{\pi}{4},\frac{\pi}{2} \right) \Rightarrow tan1x+sin12x1+x2=π\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}} = \pi.

Also at

θ=π4,2tan1x+sin12x1+x2=2.π4+sin11=π2+π2=π\theta = \frac{\pi}{4},2\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}} = 2.\frac{\pi}{4} + \sin^{- 1}1 = \frac{\pi}{2} + \frac{\pi}{2} = \pi.

\therefore The given function = π\pi = constant if θ[π4,π2)\theta \in \left\lbrack \frac{\pi}{4},\frac{\pi}{2} \right). i.e., x[1,+)x \in \lbrack 1, + \infty)