Question
Question: \(2\tan^{- 1}x + \sin^{- 1}\frac{2x}{1 + x^{2}}\) is independent of x , then...
2tan−1x+sin−11+x22x is independent of x , then
A
x∈[1,+∞)
B
x∈[−1,1]
C
x∈(−∞,−1]
D
None of these
Answer
x∈[1,+∞)
Explanation
Solution
Let x=tanθ. Then
sin−11+x22x=sin−11+tan2θ2tanθ=sin−1(sin2θ)
∴2tan−1x+sin−11+x22x=2θ+sin−1(sin2θ) If −2π≤2θ≤2π,2tan−1x+sin−11+x22x
= 2θ+2θ=4tan−1x=independent of x.
If −2π≤π−2θ≤2π,2tan−1x+sin−11+x22x
= 2θ+sin−1[sin(π−2θ)]=2θ+π−2θ= π = independent of x.
∴ θ∈/[−4π,4π] butθ∈[4π,43π]
and from the principal value of tan−1x.
θ∈(−2π,2π). Hence, θ∈(4π,2π)
∴ θ∈(4π,2π) ⇒ tan−1x+sin−11+x22x=π.
Also at
θ=4π,2tan−1x+sin−11+x22x=2.4π+sin−11=2π+2π=π.
∴ The given function = π = constant if θ∈[4π,2π). i.e., x∈[1,+∞)