Solveeit Logo

Question

Question: \(2\sin^{2}\beta + 4\cos(\alpha + \beta)\sin\alpha\sin\beta + \cos 2(\alpha + \beta)\) equal to...

2sin2β+4cos(α+β)sinαsinβ+cos2(α+β)2\sin^{2}\beta + 4\cos(\alpha + \beta)\sin\alpha\sin\beta + \cos 2(\alpha + \beta) equal to

A

sin2α\sin 2\alpha

B

cos2β\cos 2\beta

C

tanA/2\tan A/2

D

sin2β\sin 2\beta

Answer

tanA/2\tan A/2

Explanation

Solution

Since 2cos(α+β)=2cos2(α+β)1,2\cos(\alpha + \beta) = 2\cos^{2}(\alpha + \beta) - 1,

2sin2β=1cos2β2 \sin ^ { 2 } \beta = 1 - \cos 2 \beta

sinA=45,=cos2β+2cos(α+β).cos(αβ)=cos2β+cos2α+cos2β=cos2α\sin A = \frac{4}{5}, = - \cos 2\beta + 2\cos(\alpha + \beta).\cos(\alpha - \beta) = - \cos 2\beta + \cos 2\alpha + \cos 2\beta = \cos 2\alpha