Solveeit Logo

Question

Question: 2sinϴ=2-cosϴ then sinϴ=?...

2sinϴ=2-cosϴ then sinϴ=?

Answer

1, 3/5

Explanation

Solution

We are asked to find the value(s) of sinθ\sin\theta given the equation 2sinθ=2cosθ2\sin\theta = 2 - \cos\theta.

The given equation is 2sinθ=2cosθ2\sin\theta = 2 - \cos\theta. Rearrange the equation: 2sinθ+cosθ=22\sin\theta + \cos\theta = 2

To solve this equation, we can square both sides. First, isolate one of the terms if needed, but in this form, squaring directly might introduce sinθcosθ\sin\theta\cos\theta term. A better approach for squaring is to move one term to the other side if necessary to eliminate the constant term, or express one trig function in terms of the other.

Let's use the identity sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1. We can express cosθ\cos\theta in terms of sinθ\sin\theta or vice versa after squaring. From the original equation, cosθ=22sinθ\cos\theta = 2 - 2\sin\theta. Substitute this into the identity sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1: sin2θ+(22sinθ)2=1\sin^2\theta + (2 - 2\sin\theta)^2 = 1 sin2θ+(48sinθ+4sin2θ)=1\sin^2\theta + (4 - 8\sin\theta + 4\sin^2\theta) = 1 sin2θ+48sinθ+4sin2θ=1\sin^2\theta + 4 - 8\sin\theta + 4\sin^2\theta = 1 Combine like terms: 5sin2θ8sinθ+4=15\sin^2\theta - 8\sin\theta + 4 = 1 5sin2θ8sinθ+3=05\sin^2\theta - 8\sin\theta + 3 = 0

This is a quadratic equation in terms of sinθ\sin\theta. Let x=sinθx = \sin\theta. The equation becomes 5x28x+3=05x^2 - 8x + 3 = 0. We can solve this quadratic equation for xx using factorization or the quadratic formula. Using factorization: We look for two numbers that multiply to 5×3=155 \times 3 = 15 and add up to 8-8. These numbers are 3-3 and 5-5. 5x25x3x+3=05x^2 - 5x - 3x + 3 = 0 5x(x1)3(x1)=05x(x - 1) - 3(x - 1) = 0 (5x3)(x1)=0(5x - 3)(x - 1) = 0

This gives two possible solutions for x=sinθx = \sin\theta:

  1. 5x3=0    5x=3    x=355x - 3 = 0 \implies 5x = 3 \implies x = \frac{3}{5} So, sinθ=35\sin\theta = \frac{3}{5}.

  2. x1=0    x=1x - 1 = 0 \implies x = 1 So, sinθ=1\sin\theta = 1.

Since we squared the equation, we need to check if these values of sinθ\sin\theta satisfy the original equation 2sinθ=2cosθ2\sin\theta = 2 - \cos\theta.

Case 1: sinθ=1\sin\theta = 1 If sinθ=1\sin\theta = 1, then θ=π2+2kπ\theta = \frac{\pi}{2} + 2k\pi for some integer kk. For these values of θ\theta, cosθ=cos(π2+2kπ)=0\cos\theta = \cos(\frac{\pi}{2} + 2k\pi) = 0. Substitute sinθ=1\sin\theta = 1 and cosθ=0\cos\theta = 0 into the original equation: 2(1)=202(1) = 2 - 0 2=22 = 2 This is true. So, sinθ=1\sin\theta = 1 is a valid solution.

Case 2: sinθ=35\sin\theta = \frac{3}{5} If sinθ=35\sin\theta = \frac{3}{5}, then cos2θ=1sin2θ=1(35)2=1925=1625\cos^2\theta = 1 - \sin^2\theta = 1 - (\frac{3}{5})^2 = 1 - \frac{9}{25} = \frac{16}{25}. So, cosθ=1625=45\cos\theta = \sqrt{\frac{16}{25}} = \frac{4}{5} or cosθ=1625=45\cos\theta = -\sqrt{\frac{16}{25}} = -\frac{4}{5}. We need to check which value of cosθ\cos\theta corresponds to sinθ=35\sin\theta = \frac{3}{5} in the original equation.

Substitute sinθ=35\sin\theta = \frac{3}{5} into the original equation 2sinθ=2cosθ2\sin\theta = 2 - \cos\theta: 2(35)=2cosθ2(\frac{3}{5}) = 2 - \cos\theta 65=2cosθ\frac{6}{5} = 2 - \cos\theta cosθ=265=10565=45\cos\theta = 2 - \frac{6}{5} = \frac{10}{5} - \frac{6}{5} = \frac{4}{5}.

So, when sinθ=35\sin\theta = \frac{3}{5}, the original equation requires cosθ=45\cos\theta = \frac{4}{5}. This pair (sinθ=35,cosθ=45)(\sin\theta = \frac{3}{5}, \cos\theta = \frac{4}{5}) is consistent with sin2θ+cos2θ=(35)2+(45)2=925+1625=2525=1\sin^2\theta + \cos^2\theta = (\frac{3}{5})^2 + (\frac{4}{5})^2 = \frac{9}{25} + \frac{16}{25} = \frac{25}{25} = 1. So, sinθ=35\sin\theta = \frac{3}{5} is a valid solution.

The possible values for sinθ\sin\theta are 11 and 35\frac{3}{5}.

Explanation of the solution: The equation 2sinθ=2cosθ2\sin\theta = 2 - \cos\theta is solved by substituting cosθ=22sinθ\cos\theta = 2 - 2\sin\theta into the identity sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1. This yields a quadratic equation in sinθ\sin\theta: 5sin2θ8sinθ+3=05\sin^2\theta - 8\sin\theta + 3 = 0. Factoring the quadratic gives (5sinθ3)(sinθ1)=0(5\sin\theta - 3)(\sin\theta - 1) = 0, leading to sinθ=35\sin\theta = \frac{3}{5} or sinθ=1\sin\theta = 1. Both solutions are verified by substituting back into the original equation.