Solveeit Logo

Question

Question: 2sin2 + 4sin4...180sin180...

2sin2 + 4sin4...180sin180

Answer

90cot1°

Explanation

Solution

The given series is S=2sin2+4sin4++180sin180S = 2\sin2^\circ + 4\sin4^\circ + \dots + 180\sin180^\circ. This can be written as a summation: S=k=190(2k)sin(2k)S = \sum_{k=1}^{90} (2k)\sin(2k^\circ).

We can split the sum into three parts:

  1. Terms from k=1k=1 to k=44k=44: 2sin2+4sin4++88sin882\sin2^\circ + 4\sin4^\circ + \dots + 88\sin88^\circ.
  2. The middle term: 90sin9090\sin90^\circ.
  3. Terms from k=46k=46 to k=90k=90: 92sin92+94sin94++180sin18092\sin92^\circ + 94\sin94^\circ + \dots + 180\sin180^\circ.

We use the identity sin(180x)=sinx\sin(180^\circ - x) = \sin x^\circ.

Let's analyze the terms in the third part: 92sin92=92sin(18088)=92sin8892\sin92^\circ = 92\sin(180^\circ - 88^\circ) = 92\sin88^\circ. 94sin94=94sin(18086)=94sin8694\sin94^\circ = 94\sin(180^\circ - 86^\circ) = 94\sin86^\circ. ... 178sin178=178sin(1802)=178sin2178\sin178^\circ = 178\sin(180^\circ - 2^\circ) = 178\sin2^\circ. The last term is 180sin180=180×0=0180\sin180^\circ = 180 \times 0 = 0.

Now, substitute these back into the sum: S=(2sin2+4sin4++88sin88)+90sin90+(178sin2+176sin4++92sin88)+0S = (2\sin2^\circ + 4\sin4^\circ + \dots + 88\sin88^\circ) + 90\sin90^\circ + (178\sin2^\circ + 176\sin4^\circ + \dots + 92\sin88^\circ) + 0.

Group the corresponding terms from the first and third parts: S=(2sin2+178sin2)+(4sin4+176sin4)++(88sin88+92sin88)+90sin90S = (2\sin2^\circ + 178\sin2^\circ) + (4\sin4^\circ + 176\sin4^\circ) + \dots + (88\sin88^\circ + 92\sin88^\circ) + 90\sin90^\circ.

Each grouped term is of the form (2k)sin(2k)+(1802k)sin(2k)(2k)\sin(2k^\circ) + (180-2k)\sin(2k^\circ) for k=1,2,,44k=1, 2, \dots, 44. The sum of coefficients in each pair is 2k+(1802k)=1802k + (180-2k) = 180. So, each pair simplifies to 180sin(2k)180\sin(2k^\circ).

Therefore, the sum becomes: S=k=144180sin(2k)+90sin90S = \sum_{k=1}^{44} 180\sin(2k^\circ) + 90\sin90^\circ. Since sin90=1\sin90^\circ = 1: S=180k=144sin(2k)+90S = 180 \sum_{k=1}^{44} \sin(2k^\circ) + 90.

Let P=k=144sin(2k)=sin2+sin4++sin88P = \sum_{k=1}^{44} \sin(2k^\circ) = \sin2^\circ + \sin4^\circ + \dots + \sin88^\circ. This is a sum of sines in an arithmetic progression. The first term is a=2a = 2^\circ. The common difference is d=2d = 2^\circ. The number of terms is n=44n = 44.

The formula for the sum of sines in an arithmetic progression is: i=1nsin(a+(i1)d)=sin(nd/2)sin(d/2)sin(a+(n1)d/2)\sum_{i=1}^{n} \sin(a + (i-1)d) = \frac{\sin(nd/2)}{\sin(d/2)} \sin(a + (n-1)d/2).

Applying the formula to PP: P=sin(44×2/2)sin(2/2)sin(2+(441)2/2)P = \frac{\sin(44 \times 2^\circ / 2)}{\sin(2^\circ / 2)} \sin(2^\circ + (44-1)2^\circ/2). P=sin(44)sin(1)sin(2+43)P = \frac{\sin(44^\circ)}{\sin(1^\circ)} \sin(2^\circ + 43^\circ). P=sin(44)sin(1)sin(45)P = \frac{\sin(44^\circ)}{\sin(1^\circ)} \sin(45^\circ).

We know that sin45=12\sin45^\circ = \frac{1}{\sqrt{2}}. So, P=sin(44)sin(1)12P = \frac{\sin(44^\circ)}{\sin(1^\circ)} \frac{1}{\sqrt{2}}.

Now, use the identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B for sin(44)\sin(44^\circ): sin(44)=sin(451)=sin45cos1cos45sin1\sin(44^\circ) = \sin(45^\circ - 1^\circ) = \sin45^\circ\cos1^\circ - \cos45^\circ\sin1^\circ. sin(44)=12cos112sin1=12(cos1sin1)\sin(44^\circ) = \frac{1}{\sqrt{2}}\cos1^\circ - \frac{1}{\sqrt{2}}\sin1^\circ = \frac{1}{\sqrt{2}}(\cos1^\circ - \sin1^\circ).

Substitute this back into the expression for PP: P=12(cos1sin1)sin112P = \frac{\frac{1}{\sqrt{2}}(\cos1^\circ - \sin1^\circ)}{\sin1^\circ} \frac{1}{\sqrt{2}}. P=cos1sin12sin1P = \frac{\cos1^\circ - \sin1^\circ}{2\sin1^\circ}. P=12(cos1sin1sin1sin1)P = \frac{1}{2} \left( \frac{\cos1^\circ}{\sin1^\circ} - \frac{\sin1^\circ}{\sin1^\circ} \right). P=12(cot11)P = \frac{1}{2} (\cot1^\circ - 1).

Finally, substitute the value of PP back into the expression for SS: S=180P+90S = 180 P + 90. S=180×12(cot11)+90S = 180 \times \frac{1}{2} (\cot1^\circ - 1) + 90. S=90(cot11)+90S = 90 (\cot1^\circ - 1) + 90. S=90cot190+90S = 90\cot1^\circ - 90 + 90. S=90cot1S = 90\cot1^\circ.

The final answer is 90cot190\cot1^\circ.