Question
Question: 2sin2 + 4sin4...180sin180...
2sin2 + 4sin4...180sin180
90cot1°
Solution
The given series is S=2sin2∘+4sin4∘+⋯+180sin180∘. This can be written as a summation: S=∑k=190(2k)sin(2k∘).
We can split the sum into three parts:
- Terms from k=1 to k=44: 2sin2∘+4sin4∘+⋯+88sin88∘.
- The middle term: 90sin90∘.
- Terms from k=46 to k=90: 92sin92∘+94sin94∘+⋯+180sin180∘.
We use the identity sin(180∘−x)=sinx∘.
Let's analyze the terms in the third part: 92sin92∘=92sin(180∘−88∘)=92sin88∘. 94sin94∘=94sin(180∘−86∘)=94sin86∘. ... 178sin178∘=178sin(180∘−2∘)=178sin2∘. The last term is 180sin180∘=180×0=0.
Now, substitute these back into the sum: S=(2sin2∘+4sin4∘+⋯+88sin88∘)+90sin90∘+(178sin2∘+176sin4∘+⋯+92sin88∘)+0.
Group the corresponding terms from the first and third parts: S=(2sin2∘+178sin2∘)+(4sin4∘+176sin4∘)+⋯+(88sin88∘+92sin88∘)+90sin90∘.
Each grouped term is of the form (2k)sin(2k∘)+(180−2k)sin(2k∘) for k=1,2,…,44. The sum of coefficients in each pair is 2k+(180−2k)=180. So, each pair simplifies to 180sin(2k∘).
Therefore, the sum becomes: S=∑k=144180sin(2k∘)+90sin90∘. Since sin90∘=1: S=180∑k=144sin(2k∘)+90.
Let P=∑k=144sin(2k∘)=sin2∘+sin4∘+⋯+sin88∘. This is a sum of sines in an arithmetic progression. The first term is a=2∘. The common difference is d=2∘. The number of terms is n=44.
The formula for the sum of sines in an arithmetic progression is: ∑i=1nsin(a+(i−1)d)=sin(d/2)sin(nd/2)sin(a+(n−1)d/2).
Applying the formula to P: P=sin(2∘/2)sin(44×2∘/2)sin(2∘+(44−1)2∘/2). P=sin(1∘)sin(44∘)sin(2∘+43∘). P=sin(1∘)sin(44∘)sin(45∘).
We know that sin45∘=21. So, P=sin(1∘)sin(44∘)21.
Now, use the identity sin(A−B)=sinAcosB−cosAsinB for sin(44∘): sin(44∘)=sin(45∘−1∘)=sin45∘cos1∘−cos45∘sin1∘. sin(44∘)=21cos1∘−21sin1∘=21(cos1∘−sin1∘).
Substitute this back into the expression for P: P=sin1∘21(cos1∘−sin1∘)21. P=2sin1∘cos1∘−sin1∘. P=21(sin1∘cos1∘−sin1∘sin1∘). P=21(cot1∘−1).
Finally, substitute the value of P back into the expression for S: S=180P+90. S=180×21(cot1∘−1)+90. S=90(cot1∘−1)+90. S=90cot1∘−90+90. S=90cot1∘.
The final answer is 90cot1∘.