Solveeit Logo

Question

Question: \[2\sin A\cos^{3}A - 2\sin^{3}A\cos A =\]...

2sinAcos3A2sin3AcosA=2\sin A\cos^{3}A - 2\sin^{3}A\cos A =

A

sin4A\sin 4A

B

12sin4A\frac{1}{2}\sin 4A

C

14sin4A\frac{1}{4}\sin 4A

D

None of these

Answer

12sin4A\frac{1}{2}\sin 4A

Explanation

Solution

2sinAcos3A2sin3AcosA2 \sin A \cos ^ { 3 } A - 2 \sin ^ { 3 } A \cos A

=2sinAcosA(cos2Asin2A)= 2\sin A\cos A(\cos^{2}A - \sin^{2}A)

=2sinAcosAcos2A=sin2Acos2A=12sin4A= 2\sin A\cos A\cos 2A = \sin 2A\cos 2A = \frac{1}{2}\sin 4A.