Solveeit Logo

Question

Question: $$2NO_2 \rightleftharpoons N_2O_4; K_p = 6.8 \text{ atm}^{-1}$$ $$NO + NO_2 \rightleftharpoons N_2O_...

2NO2N2O4;Kp=6.8 atm12NO_2 \rightleftharpoons N_2O_4; K_p = 6.8 \text{ atm}^{-1} NO+NO2N2O3NO + NO_2 \rightleftharpoons N_2O_3

In an experiment when NO and NO2NO_2 are mixed in the ratio of 1:2, the final total pressure was 5.05 atm and the partial pressure of N2O4N_2O_4 was 1.7 atm. Calculate

a. the equilibrium partial pressure of NO.

b. KpK_p for NO+NO2N2O3NO + NO_2 \rightleftharpoons N_2O_3.

Answer

a. 1.05 atm, b. 24/7 atm1^{-1}

Explanation

Solution

The problem involves two simultaneous equilibrium reactions and requires calculating equilibrium partial pressure and an equilibrium constant.

Given reactions and data:

  1. 2NO2(g)N2O4(g)2NO_2 (g) \rightleftharpoons N_2O_4 (g); Kp=6.8 atm1K_p = 6.8 \text{ atm}^{-1}
  2. NO(g)+NO2(g)N2O3(g)NO (g) + NO_2 (g) \rightleftharpoons N_2O_3 (g)

Initial condition: NO and NO2NO_2 are mixed in the ratio of 1:2. Final total pressure (PtotalP_{total}) = 5.05 atm. Partial pressure of N2O4N_2O_4 (PN2O4P_{N_2O_4}) = 1.7 atm at equilibrium.

Let's denote the initial partial pressures of NO and NO2NO_2 as PNO,0P_{NO,0} and PNO2,0P_{NO_2,0} respectively. Given PNO,0:PNO2,0=1:2P_{NO,0} : P_{NO_2,0} = 1:2, so PNO2,0=2PNO,0P_{NO_2,0} = 2 P_{NO,0}.

Step 1: Calculate the equilibrium partial pressure of NO2NO_2 from the first reaction. For the reaction 2NO2(g)N2O4(g)2NO_2 (g) \rightleftharpoons N_2O_4 (g), the equilibrium constant KpK_p is given by: Kp=PN2O4(PNO2)2K_p = \frac{P_{N_2O_4}}{(P_{NO_2})^2} Given Kp=6.8 atm1K_p = 6.8 \text{ atm}^{-1} and PN2O4=1.7 atmP_{N_2O_4} = 1.7 \text{ atm}. 6.8=1.7(PNO2)26.8 = \frac{1.7}{(P_{NO_2})^2} (PNO2)2=1.76.8=14=0.25(P_{NO_2})^2 = \frac{1.7}{6.8} = \frac{1}{4} = 0.25 PNO2=0.25=0.5 atmP_{NO_2} = \sqrt{0.25} = 0.5 \text{ atm} (This is the equilibrium partial pressure of NO2NO_2).

Step 2: Set up expressions for equilibrium partial pressures based on initial pressures and changes. Let xx be the partial pressure of N2O4N_2O_4 formed at equilibrium, so x=PN2O4=1.7 atmx = P_{N_2O_4} = 1.7 \text{ atm}. This means 2x=3.4 atm2x = 3.4 \text{ atm} of NO2NO_2 was consumed in the first reaction. Let yy be the partial pressure of N2O3N_2O_3 formed at equilibrium, so y=PN2O3y = P_{N_2O_3}. This means yy atm of NO and yy atm of NO2NO_2 were consumed in the second reaction.

The equilibrium partial pressures are: PNO,eq=PNO,0yP_{NO,eq} = P_{NO,0} - y PNO2,eq=PNO2,02xy=PNO2,02(1.7)y=PNO2,03.4yP_{NO_2,eq} = P_{NO_2,0} - 2x - y = P_{NO_2,0} - 2(1.7) - y = P_{NO_2,0} - 3.4 - y PN2O3,eq=yP_{N_2O_3,eq} = y PN2O4,eq=x=1.7 atmP_{N_2O_4,eq} = x = 1.7 \text{ atm}

We know PNO2,eq=0.5 atmP_{NO_2,eq} = 0.5 \text{ atm} from Step 1. So, PNO2,03.4y=0.5    PNO2,0y=3.9 atmP_{NO_2,0} - 3.4 - y = 0.5 \implies P_{NO_2,0} - y = 3.9 \text{ atm}.

Step 3: Use the total pressure to find the initial partial pressure of NO. The total pressure at equilibrium is the sum of the partial pressures of all gases: Ptotal=PNO,eq+PNO2,eq+PN2O3,eq+PN2O4,eqP_{total} = P_{NO,eq} + P_{NO_2,eq} + P_{N_2O_3,eq} + P_{N_2O_4,eq} 5.05=(PNO,0y)+0.5+y+1.75.05 = (P_{NO,0} - y) + 0.5 + y + 1.7 Notice that the 'y' terms cancel out. 5.05=PNO,0+0.5+1.75.05 = P_{NO,0} + 0.5 + 1.7 5.05=PNO,0+2.25.05 = P_{NO,0} + 2.2 PNO,0=5.052.2=2.85 atmP_{NO,0} = 5.05 - 2.2 = 2.85 \text{ atm}.

Step 4: Calculate 'y' and the equilibrium partial pressure of NO (Part a). We have PNO2,0=2PNO,0=2(2.85)=5.7 atmP_{NO_2,0} = 2 P_{NO,0} = 2(2.85) = 5.7 \text{ atm}. Substitute PNO2,0P_{NO_2,0} into the equation from Step 2: PNO2,0y=3.9P_{NO_2,0} - y = 3.9 5.7y=3.95.7 - y = 3.9 y=5.73.9=1.8 atmy = 5.7 - 3.9 = 1.8 \text{ atm}.

This means PN2O3,eq=1.8 atmP_{N_2O_3,eq} = 1.8 \text{ atm}.

a. The equilibrium partial pressure of NO (PNO,eqP_{NO,eq}): PNO,eq=PNO,0y=2.851.8=1.05 atmP_{NO,eq} = P_{NO,0} - y = 2.85 - 1.8 = 1.05 \text{ atm}.

Step 5: Calculate KpK_p for the second reaction (Part b). For the reaction NO(g)+NO2(g)N2O3(g)NO (g) + NO_2 (g) \rightleftharpoons N_2O_3 (g), the equilibrium constant KpK_p is: Kp=PN2O3,eq(PNO,eq)(PNO2,eq)K_p = \frac{P_{N_2O_3,eq}}{(P_{NO,eq})(P_{NO_2,eq})} Substitute the equilibrium partial pressures: PN2O3,eq=1.8 atmP_{N_2O_3,eq} = 1.8 \text{ atm} PNO,eq=1.05 atmP_{NO,eq} = 1.05 \text{ atm} PNO2,eq=0.5 atmP_{NO_2,eq} = 0.5 \text{ atm}

Kp=1.8(1.05)(0.5)=1.80.525K_p = \frac{1.8}{(1.05)(0.5)} = \frac{1.8}{0.525} Kp=1800525K_p = \frac{1800}{525} (Multiply numerator and denominator by 1000 to remove decimals) Divide by 25: Kp=7221K_p = \frac{72}{21} Divide by 3: Kp=247K_p = \frac{24}{7} Kp3.4286 atm1K_p \approx 3.4286 \text{ atm}^{-1}.

The final answer is a.1.05 atm,b.24/7 atm1\boxed{a. 1.05 \text{ atm}, b. 24/7 \text{ atm}^{-1}}

Explanation of the solution:

  1. From the given KpK_p for 2NO2N2O42NO_2 \rightleftharpoons N_2O_4 and the equilibrium partial pressure of N2O4N_2O_4, calculate the equilibrium partial pressure of NO2NO_2.
  2. Define initial partial pressures based on the given ratio.
  3. Express equilibrium partial pressures of all species in terms of initial partial pressures and extents of reaction (xx for N2O4N_2O_4 formation, yy for N2O3N_2O_3 formation).
  4. Use the given total equilibrium pressure to set up an equation. This equation simplifies to directly yield the initial partial pressure of NO.
  5. Substitute the initial partial pressure of NO and the calculated equilibrium partial pressure of NO2NO_2 into the expressions to find the extent of reaction for N2O3N_2O_3 formation (yy). This gives the equilibrium partial pressure of N2O3N_2O_3.
  6. Calculate the equilibrium partial pressure of NO using its initial partial pressure and yy.
  7. Finally, use the equilibrium partial pressures of NONO, NO2NO_2, and N2O3N_2O_3 to calculate KpK_p for the second reaction.

Answer: a. The equilibrium partial pressure of NO is 1.05 atm. b. KpK_p for NO+NO2N2O3NO + NO_2 \rightleftharpoons N_2O_3 is 24/7 atm1^{-1} (approximately 3.43 atm1^{-1}).