Solveeit Logo

Question

Question: \(2^{n}\)can be expanded by binomial theorem, if....

2n2^{n}can be expanded by binomial theorem, if.

A

n.2n1n.2^{n - 1}

B

n.2n+1n.2^{n + 1}

C

C01+C23+C45+C67+....\frac{C_{0}}{1} + \frac{C_{2}}{3} + \frac{C_{4}}{5} + \frac{C_{6}}{7} + ....

D

2n+1n+1\frac{2^{n + 1}}{n + 1}

Answer

C01+C23+C45+C67+....\frac{C_{0}}{1} + \frac{C_{2}}{3} + \frac{C_{4}}{5} + \frac{C_{6}}{7} + ....

Explanation

Solution

The given expression can be written as

(1+x+x2+...)n=[(1x)1]n=(1x)n(1 + x + x^{2} + ...)^{- n} = \lbrack(1 - x)^{- 1}\rbrack^{- n} = (1 - x)^{n}and it is valid only when

=nC0nC1x+nC2x2+...+(1)nnCn.xn=^{n}C_{0} -^{n}C_{1}x +^{n}C_{2}x^{2} + ... + ( - 1{)^{n}}^{n}C_{n}.x^{n}.