Question
Question: The value of $\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left((2n-1)^4+\fra...
The value of (24+41)(44+41).....((2n)4+41)(14+41)(34+41).....((2n−1)4+41) is equal to

4n2+2n+11
8n2+4n+11
4(2n2+n+1)1
8n2−4n+1n
8n2+4n+11
Solution
First, let's factorize the general term k4+41:
k4+41=(k2)2+(21)2
We can add and subtract 2⋅k2⋅21=k2 to complete the square:
k4+41=(k2)2+2⋅k2⋅21+(21)2−k2
k4+41=(k2+21)2−k2
This is a difference of squares, A2−B2=(A−B)(A+B):
k4+41=(k2+21−k)(k2+21+k)
Rearranging the terms:
k4+41=(k2−k+21)(k2+k+21)
Let f(k)=k2−k+21.
Notice that k2+k+21=(k+1)2−(k+1)+21=f(k+1).
So, the general term can be written as:
k4+41=f(k)⋅f(k+1)
Now, let's apply this to the given product.
The numerator is:
N=(14+41)(34+41).....((2n−1)4+41)
Using the factorization:
N=[f(1)f(2)][f(3)f(4)]...[f(2n−1)f(2n)]
N=f(1)⋅f(2)⋅f(3)⋅f(4)⋅...⋅f(2n−1)⋅f(2n)
The denominator is:
D=(24+41)(44+41).....((2n)4+41)
Using the factorization:
D=[f(2)f(3)][f(4)f(5)]...[f(2n)f(2n+1)]
D=f(2)⋅f(3)⋅f(4)⋅f(5)⋅...⋅f(2n)⋅f(2n+1)
Now, form the fraction:
DN=f(2)⋅f(3)⋅f(4)⋅f(5)⋅...⋅f(2n)⋅f(2n+1)f(1)⋅f(2)⋅f(3)⋅f(4)⋅...⋅f(2n−1)⋅f(2n)
Most terms cancel out, leaving:
DN=f(2n+1)f(1)
Now, calculate f(1) and f(2n+1):
f(k)=k2−k+21
f(1)=12−1+21=1−1+21=21
f(2n+1)=(2n+1)2−(2n+1)+21
f(2n+1)=(4n2+4n+1)−(2n+1)+21
f(2n+1)=4n2+2n+21
Substitute these values back into the expression:
DN=4n2+2n+2121
To simplify, multiply the numerator and denominator by 2:
DN=(4n2+2n+21)⋅221⋅2
DN=8n2+4n+11