Solveeit Logo

Question

Question: The value of $\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left((2n-1)^4+\fra...

The value of (14+14)(34+14).....((2n1)4+14)(24+14)(44+14).....((2n)4+14)\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left((2n-1)^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right).....\left((2n)^4+\frac{1}{4}\right)} is equal to

A

14n2+2n+1\frac{1}{4n^2+2n+1}

B

18n2+4n+1\frac{1}{8n^2+4n+1}

C

14(2n2+n+1)\frac{1}{4(2n^2+n+1)}

D

n8n24n+1\frac{n}{8n^2-4n+1}

Answer

18n2+4n+1\frac{1}{8n^2+4n+1}

Explanation

Solution

First, let's factorize the general term k4+14k^4 + \frac{1}{4}:

k4+14=(k2)2+(12)2k^4 + \frac{1}{4} = (k^2)^2 + \left(\frac{1}{2}\right)^2

We can add and subtract 2k212=k22 \cdot k^2 \cdot \frac{1}{2} = k^2 to complete the square:

k4+14=(k2)2+2k212+(12)2k2k^4 + \frac{1}{4} = (k^2)^2 + 2 \cdot k^2 \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2 - k^2

k4+14=(k2+12)2k2k^4 + \frac{1}{4} = \left(k^2 + \frac{1}{2}\right)^2 - k^2

This is a difference of squares, A2B2=(AB)(A+B)A^2 - B^2 = (A-B)(A+B):

k4+14=(k2+12k)(k2+12+k)k^4 + \frac{1}{4} = \left(k^2 + \frac{1}{2} - k\right)\left(k^2 + \frac{1}{2} + k\right)

Rearranging the terms:

k4+14=(k2k+12)(k2+k+12)k^4 + \frac{1}{4} = \left(k^2 - k + \frac{1}{2}\right)\left(k^2 + k + \frac{1}{2}\right)

Let f(k)=k2k+12f(k) = k^2 - k + \frac{1}{2}.

Notice that k2+k+12=(k+1)2(k+1)+12=f(k+1)k^2 + k + \frac{1}{2} = (k+1)^2 - (k+1) + \frac{1}{2} = f(k+1).

So, the general term can be written as:

k4+14=f(k)f(k+1)k^4 + \frac{1}{4} = f(k) \cdot f(k+1)

Now, let's apply this to the given product.

The numerator is:

N=(14+14)(34+14).....((2n1)4+14)N = \left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left((2n-1)^4+\frac{1}{4}\right)

Using the factorization:

N=[f(1)f(2)][f(3)f(4)]...[f(2n1)f(2n)]N = [f(1)f(2)][f(3)f(4)]...[f(2n-1)f(2n)]

N=f(1)f(2)f(3)f(4)...f(2n1)f(2n)N = f(1) \cdot f(2) \cdot f(3) \cdot f(4) \cdot ... \cdot f(2n-1) \cdot f(2n)

The denominator is:

D=(24+14)(44+14).....((2n)4+14)D = \left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right).....\left((2n)^4+\frac{1}{4}\right)

Using the factorization:

D=[f(2)f(3)][f(4)f(5)]...[f(2n)f(2n+1)]D = [f(2)f(3)][f(4)f(5)]...[f(2n)f(2n+1)]

D=f(2)f(3)f(4)f(5)...f(2n)f(2n+1)D = f(2) \cdot f(3) \cdot f(4) \cdot f(5) \cdot ... \cdot f(2n) \cdot f(2n+1)

Now, form the fraction:

ND=f(1)f(2)f(3)f(4)...f(2n1)f(2n)f(2)f(3)f(4)f(5)...f(2n)f(2n+1)\frac{N}{D} = \frac{f(1) \cdot f(2) \cdot f(3) \cdot f(4) \cdot ... \cdot f(2n-1) \cdot f(2n)}{f(2) \cdot f(3) \cdot f(4) \cdot f(5) \cdot ... \cdot f(2n) \cdot f(2n+1)}

Most terms cancel out, leaving:

ND=f(1)f(2n+1)\frac{N}{D} = \frac{f(1)}{f(2n+1)}

Now, calculate f(1)f(1) and f(2n+1)f(2n+1):

f(k)=k2k+12f(k) = k^2 - k + \frac{1}{2}

f(1)=121+12=11+12=12f(1) = 1^2 - 1 + \frac{1}{2} = 1 - 1 + \frac{1}{2} = \frac{1}{2}

f(2n+1)=(2n+1)2(2n+1)+12f(2n+1) = (2n+1)^2 - (2n+1) + \frac{1}{2}

f(2n+1)=(4n2+4n+1)(2n+1)+12f(2n+1) = (4n^2 + 4n + 1) - (2n+1) + \frac{1}{2}

f(2n+1)=4n2+2n+12f(2n+1) = 4n^2 + 2n + \frac{1}{2}

Substitute these values back into the expression:

ND=124n2+2n+12\frac{N}{D} = \frac{\frac{1}{2}}{4n^2 + 2n + \frac{1}{2}}

To simplify, multiply the numerator and denominator by 2:

ND=122(4n2+2n+12)2\frac{N}{D} = \frac{\frac{1}{2} \cdot 2}{\left(4n^2 + 2n + \frac{1}{2}\right) \cdot 2}

ND=18n2+4n+1\frac{N}{D} = \frac{1}{8n^2 + 4n + 1}