Solveeit Logo

Question

Question: \(2\log\left( {logtan}\frac{x}{2} \right) + c\)...

2log(logtanx2)+c2\log\left( {logtan}\frac{x}{2} \right) + c

A

12log(logtanx2)+c\frac{1}{2}\log\left( {logtan}\frac{x}{2} \right) + c

B

1cos2x(1tanx)2dx=\int_{}^{}{\frac{1}{\cos^{2}x(1 - \tan x)^{2}}dx =}

C

1tanx1+c\frac{1}{\tan x - 1} + c

D

None of these

Answer

1cos2x(1tanx)2dx=\int_{}^{}{\frac{1}{\cos^{2}x(1 - \tan x)^{2}}dx =}

Explanation

Solution

12logtan(π8+x2)+c\frac{1}{\sqrt{2}}{logtan}\left( \frac{\pi}{8} + \frac{x}{2} \right) + c

Putting 1xx216mudx=\int_{}^{}{\frac{1}{x\sqrt{x^{2} - 1}}\mspace{6mu} dx =} we get

cos1x+c\cos^{- 1}x + c.