Solveeit Logo

Question

Question: 2H₂O(g) + 2Cl₂ (g) $\rightleftharpoons$ 4HCl(g) + O₂(g) Kₚ = 12 × 10⁸ atm At certain temperature (T...

2H₂O(g) + 2Cl₂ (g) \rightleftharpoons 4HCl(g) + O₂(g) Kₚ = 12 × 10⁸ atm

At certain temperature (T) for the gas phase reaction If Cl₂, HCl & O₂ are mixed in such a manner that the partial pressure of each is 2 atm and the mixture is brough into contact with excess of liquid water. What would be approximate partial pressure (in 10⁻³ atm) of Cl₂ when equilibrium is attained at temperature (T)?

[Given : Vapour pressure of water is 380 mm Hg at temperature (T)]

A

3.6

B

7.2

C

1.8

D

0.9

Answer

3.6

Explanation

Solution

The reaction is: 2H2O(g)+2Cl2(g)4HCl(g)+O2(g)2\text{H}_2\text{O(g)} + 2\text{Cl}_2\text{(g)} \rightleftharpoons 4\text{HCl(g)} + \text{O}_2\text{(g)} Kp=12×108K_p = 12 \times 10^8 atm.

Vapor pressure of water: 380 mm Hg. PH2O=380760 atm=0.5 atmP_{\text{H}_2\text{O}} = \frac{380}{760} \text{ atm} = 0.5 \text{ atm}. Since there is excess liquid water, PH2O=0.5P_{\text{H}_2\text{O}} = 0.5 atm is constant.

Initial partial pressures: PCl2=2P_{\text{Cl}_2} = 2 atm, PHCl=2P_{\text{HCl}} = 2 atm, PO2=2P_{\text{O}_2} = 2 atm. The reaction quotient Qp=(PHCl)4PO2(PH2O)2(PCl2)2=(2)4×2(0.5)2(2)2=16×20.25×4=321=32Q_p = \frac{(P_{\text{HCl}})^4 P_{\text{O}_2}}{(P_{\text{H}_2\text{O}})^2 (P_{\text{Cl}_2})^2} = \frac{(2)^4 \times 2}{(0.5)^2 (2)^2} = \frac{16 \times 2}{0.25 \times 4} = \frac{32}{1} = 32. Since QpKpQ_p \ll K_p, the reaction proceeds to the right.

Given KpK_p is very large, the reaction will proceed significantly to the right. Let the equilibrium partial pressure of Cl2Cl_2 be pp. Since the reaction is strongly product-favored, we can assume that the reaction consumes most of the Cl2Cl_2. Let PCl2=pP_{\text{Cl}_2} = p. The change in PCl2P_{\text{Cl}_2} is p2p - 2. The change in PHClP_{\text{HCl}} is 42(p2)=2(p2)\frac{4}{2}(p - 2) = 2(p - 2). The change in PO2P_{\text{O}_2} is 12(p2)\frac{1}{2}(p - 2).

Equilibrium partial pressures: PH2O=0.5P_{\text{H}_2\text{O}} = 0.5 atm (constant) PCl2=pP_{\text{Cl}_2} = p PHCl=2+2(p2)=2+2p4=2p2P_{\text{HCl}} = 2 + 2(p-2) = 2 + 2p - 4 = 2p - 2 PO2=2+12(p2)=2+p21=1+p2P_{\text{O}_2} = 2 + \frac{1}{2}(p-2) = 2 + \frac{p}{2} - 1 = 1 + \frac{p}{2}

Since KpK_p is very large, pp must be very small. We can approximate: PHCl2(0)2=2P_{\text{HCl}} \approx 2(0) - 2 = -2 (This approach is flawed as it assumes the change is relative to initial state, but PH2OP_{H_2O} is fixed).

Let's assume the reaction proceeds until PCl2P_{\text{Cl}_2} is very small, pp. The amount of Cl2Cl_2 consumed is 2p2-p. This implies that the amount of H2OH_2O consumed is 22(2p)=2p\frac{2}{2}(2-p) = 2-p. The amount of HClHCl produced is 42(2p)=2(2p)\frac{4}{2}(2-p) = 2(2-p). The amount of O2O_2 produced is 12(2p)\frac{1}{2}(2-p).

Equilibrium partial pressures: PH2O=0.5P_{\text{H}_2\text{O}} = 0.5 atm (constant due to excess liquid) PCl2=pP_{\text{Cl}_2} = p PHCl=2+2(2p)=2+42p=62pP_{\text{HCl}} = 2 + 2(2-p) = 2 + 4 - 2p = 6 - 2p PO2=2+12(2p)=2+1p2=3p2P_{\text{O}_2} = 2 + \frac{1}{2}(2-p) = 2 + 1 - \frac{p}{2} = 3 - \frac{p}{2}

Since pp is very small, we can approximate: PHCl6P_{\text{HCl}} \approx 6 atm PO23P_{\text{O}_2} \approx 3 atm

Substitute these into the KpK_p expression: Kp=(PHCl)4PO2(PH2O)2(PCl2)2K_p = \frac{(P_{\text{HCl}})^4 P_{\text{O}_2}}{(P_{\text{H}_2\text{O}})^2 (P_{\text{Cl}_2})^2} 12×108=(6)4×3(0.5)2×p212 \times 10^8 = \frac{(6)^4 \times 3}{(0.5)^2 \times p^2} 12×108=1296×30.25×p212 \times 10^8 = \frac{1296 \times 3}{0.25 \times p^2} 12×108=38880.25×p212 \times 10^8 = \frac{3888}{0.25 \times p^2} p2=38880.25×12×108=38883×108=1296×108p^2 = \frac{3888}{0.25 \times 12 \times 10^8} = \frac{3888}{3 \times 10^8} = 1296 \times 10^{-8} p=1296×108=36×104p = \sqrt{1296 \times 10^{-8}} = 36 \times 10^{-4} atm.

Convert to 10310^{-3} atm: p=36×104 atm=3.6×103 atmp = 36 \times 10^{-4} \text{ atm} = 3.6 \times 10^{-3} \text{ atm}. The approximate partial pressure of Cl2Cl_2 is 3.6×1033.6 \times 10^{-3} atm. The value in 10310^{-3} atm is 3.6.