Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

2cosπ13cos9π13+cos3π13+cos5π13=02cos \frac{π}{13}cos\frac{9π}{13}+cos \frac{3π}{13}+cos \frac{5π}{13}=0

Answer

L.H.S=$$ 2cosπ13cos9π13+cos3π13+cos5π132cos \frac{π}{13}cos\frac{9π}{13}+cos \frac{3π}{13}+cos \frac{5π}{13}

=2cosπ13cos9π13+2cos(3π13+5π132)cos(3π135π132)=2cos \frac{π}{13}cos\frac{9π}{13}+2cos(\frac{\frac{3{\pi}}{13}+\frac{5{\pi}}{13}}{2})cos(\frac{3{\pi}{13}-\frac{5\pi}{13}}{2}) [cosx+cosy=2cos(x+y2)cos(xy2)][cos\,x+cos\,y=2cos(\frac{x+y}{2})cos(\frac{x-y}{2})]

=2cosπ13cos9π13+2cos4π13cos(π13)=2cos \frac{π}{13}cos\frac{9π}{13}+2cos\frac{4{\pi}}{13}cos(\frac{-\pi}{13})

=2cosπ13cos9π13+2cos4π13cosπ13=2cos \frac{π}{13}cos\frac{9π}{13}+2cos\frac{4{\pi}}{13}cos\frac{\pi}{13}

=2cosπ13[cos9π13+2cos4π13]=2cos \frac{π}{13}[cos\frac{9π}{13}+2cos\frac{4{\pi}}{13}]

=2cosπ13[2cos(9π13+4π132)cos(9π13+4π132)]=2cos \frac{π}{13}[2cos(\frac{\frac{9π}{13}+\frac{4{\pi}}{13}}{2})cos(\frac{\frac{9{\pi}}{13}+\frac{4{\pi}}{13}}{2})]

2cosπ13[2cosπ2cos5π26]2cos\frac{\pi}{13}[2cos\frac{\pi}{2}cos\frac{5{\pi}}{26}]

2cosπ13×2×0×cos5π262cos\frac{\pi}{13}×2×0×cos\frac{5{\pi}}{26}

=0=R.H.S= 0 = R.H.S