Solveeit Logo

Question

Question: Range of the function $f(x) = \log_2 \left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}}\right)$ is:...

Range of the function f(x)=log2(4x+2+2x)f(x) = \log_2 \left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}}\right) is:

Answer

[12,1]\left[\frac{1}{2}, 1\right]

Explanation

Solution

  1. Find the domain of the function f(x)f(x). The domain is [2,2][-2, 2].

  2. Let g(x)=x+2+2xg(x) = \sqrt{x+2} + \sqrt{2-x}. Find the range of g(x)g(x) on the domain [2,2][-2, 2]. By squaring g(x)g(x), we found that g(x)2[4,8]g(x)^2 \in [4, 8], so g(x)[2,22]g(x) \in [2, 2\sqrt{2}].

  3. The argument of the logarithm is 4g(x)\frac{4}{g(x)}. Determine the range of this argument. Since g(x)[2,22]g(x) \in [2, 2\sqrt{2}], the argument 4g(x)[422,42]=[2,2]\frac{4}{g(x)} \in \left[\frac{4}{2\sqrt{2}}, \frac{4}{2}\right] = [\sqrt{2}, 2].

  4. The function is f(x)=log2(y)f(x) = \log_2(y), where yy is the argument of the logarithm. Since y[2,2]y \in [\sqrt{2}, 2] and log2(y)\log_2(y) is an increasing function, the range of f(x)f(x) is [log2(2),log2(2)]=[12,1][\log_2(\sqrt{2}), \log_2(2)] = \left[\frac{1}{2}, 1\right].