Solveeit Logo

Question

Question: In gold foil experiment if number deflected of $\alpha$-particle with respect to $120^\circ$ are 12 ...

In gold foil experiment if number deflected of α\alpha-particle with respect to 120120^\circ are 12 then calculate number of deflected α\alpha-particle with respect to 6060^\circ-

A

36

B

108

C

24

D

None of these

Answer

108

Explanation

Solution

The number of α\alpha-particles scattered at an angle θ\theta in Rutherford's gold foil experiment is given by the Rutherford scattering formula:

N(θ)1sin4(θ2)N(\theta) \propto \frac{1}{\sin^4(\frac{\theta}{2})}

Given:

Number of α\alpha-particles deflected at θ1=120\theta_1 = 120^\circ is N1=12N_1 = 12.
We need to calculate the number of α\alpha-particles deflected at θ2=60\theta_2 = 60^\circ, let's call it N2N_2.

Using the proportionality relation for the two angles:

N2N1=1sin4(θ22)1sin4(θ12)\frac{N_2}{N_1} = \frac{\frac{1}{\sin^4(\frac{\theta_2}{2})}}{\frac{1}{\sin^4(\frac{\theta_1}{2})}}

N2N1=sin4(θ12)sin4(θ22)\frac{N_2}{N_1} = \frac{\sin^4(\frac{\theta_1}{2})}{\sin^4(\frac{\theta_2}{2})}

Now, substitute the given angles:

θ1=120    θ12=60\theta_1 = 120^\circ \implies \frac{\theta_1}{2} = 60^\circ

θ2=60    θ22=30\theta_2 = 60^\circ \implies \frac{\theta_2}{2} = 30^\circ

Calculate the sine values:

sin(60)=32\sin(60^\circ) = \frac{\sqrt{3}}{2}

sin(30)=12\sin(30^\circ) = \frac{1}{2}

Substitute these values into the ratio:

N212=(32)4(12)4\frac{N_2}{12} = \frac{\left(\frac{\sqrt{3}}{2}\right)^4}{\left(\frac{1}{2}\right)^4}

N212=(3)4241424\frac{N_2}{12} = \frac{\frac{(\sqrt{3})^4}{2^4}}{\frac{1^4}{2^4}}

N212=(3)414\frac{N_2}{12} = \frac{(\sqrt{3})^4}{1^4}

Since (3)4=(31/2)4=32=9(\sqrt{3})^4 = (3^{1/2})^4 = 3^2 = 9:

N212=91\frac{N_2}{12} = \frac{9}{1}

N2=12×9N_2 = 12 \times 9

N2=108N_2 = 108

Thus, the number of deflected α\alpha-particles with respect to 6060^\circ is 108.