Solveeit Logo

Question

Question: The number $N = \frac{1+2\log_3 2}{(1 + \log_3 2)^2} + \log_6^2 2$ when simplified reduces to -...

The number N=1+2log32(1+log32)2+log622N = \frac{1+2\log_3 2}{(1 + \log_3 2)^2} + \log_6^2 2 when simplified reduces to -

A

a prime number

B

an irrational number

C

a real which is less than log3π\log_3 \pi

D

a real which is greater than log76\log_7 6

Answer

C and D

Explanation

Solution

Let x=log32x = \log_3 2. The first term is 1+2x(1+x)2=1(x1+x)2\frac{1+2x}{(1+x)^2} = 1 - \left(\frac{x}{1+x}\right)^2. Since 1+x=1+log32=log33+log32=log361+x = 1 + \log_3 2 = \log_3 3 + \log_3 2 = \log_3 6, we have x1+x=log32log36=log62\frac{x}{1+x} = \frac{\log_3 2}{\log_3 6} = \log_6 2. So the first term is 1(log62)21 - (\log_6 2)^2. The second term is (log62)2(\log_6 2)^2. Thus, N=(1(log62)2)+(log62)2=1N = (1 - (\log_6 2)^2) + (\log_6 2)^2 = 1.

Check options: (A) 1 is not prime. (B) 1 is rational. (C) 1<log3π    31<π    3<π1 < \log_3 \pi \iff 3^1 < \pi \iff 3 < \pi, which is true. (D) 1>log76    71>6    7>61 > \log_7 6 \iff 7^1 > 6 \iff 7 > 6, which is true.