Question
Question: \(28\text{ g}\) of \({{N}_{2}}\) and \(6g\) of \({{H}_{2}}\) were mixed. At equilibrium, \(17g\) g o...
28 g of N2 and 6g of H2 were mixed. At equilibrium, 17g g of NH3 was produced. Then, the weights of N2 and H2 at equilibrium are respectively
(a) 11 g , 0g
(b) 1 g , 3g
(c) 14 g , 3g
(d) 11 g , 3g
Solution
First of we should know the number of the nitrogen and hydrogen at the equilibrium and then by using them, we can easily calculate the weight of the nitrogen and hydrogen at equilibrium by using the formula as; mole=molecular weightgiven weight. Now solve it.
Complete step by step answer:
- When nitrogen reacts with the hydrogen , it results in the formation of the ammonia. The reaction of the formation of the ammonia occurs as:
N2+3H2→2NH3
Initially, the number of moles present are ; $\begin{aligned}
& {{N}{2}}+3{{H}{2}}\to 2N{{H}_{3}} \\
\end{aligned}Atequilibrium,thenumberofmolespresentare;\begin{aligned}
& {{N}{2}}+3{{H}{2}}\to 2N{{H}_{3}} \\
& \text{1-x 3-3x 2x} \\
\end{aligned}\-Now,fromthiswecancalculatethenumberofmolesofthenitrogenandhydrogenatequilibriumas;Firstofwewillfindthevalueofxbyusingthenumberofmolesofammoniaas;\begin{aligned}
& 2x=1 \\
& x=\dfrac{1}{2} \\
\end{aligned}\-Now,fromthis,wecancalculatethenumberofmolesofnitrogenpresentatequilibriumisas:Molesofnitrogen:−1-\dfrac{1}{2}=\dfrac{2-1}{2}=\dfrac{1}{2}Similarly,wecancalculatethenumberofmoleshydrogenattheequilibriumas;Molesofhydrogen:−3-\dfrac{3}{2}=\dfrac{6-3}{2}=\dfrac{3}{2}\-Now,weknowthenumberofmolesofthenitrogenandhydrogenandbyusingthemoleformulawecaneasilycalculate,thegivenweightofthenitrogenandthehydrogen.\begin{aligned}
& mole=\dfrac{given\text{ }weight}{molecular\text{ }weight} \\
& given\text{ }weight=mole\times molecular\text{ }weight-------(1) \\
\end{aligned}Weknowthat;Themolecularweightofnitrogen=28Andthemolecularweightofhydrogen=2\-Nowusingtheequation(1),wecancalculatethegivenmassas;\begin{aligned}
& given\text{ }weight\text{ }of\text{ }{{\text{N}}{2}}=\dfrac{1}{2}\times 28 \\
& \text{ =14g} \\
\end{aligned}\begin{aligned}
& given\text{ }weight\text{ }of\text{ }{{\text{H}}{2}}=\dfrac{3}{2}\times 2 \\
& \text{ =3g} \\
\end{aligned}Thus,whenthe28\text{ g}of{{N}{2}}and6gof{{H}{2}}weremixedtogether,17ggofN{{H}{3}}wasproduced.Then,theweightsof{{N}{2}}and{{H}_{2}}atequilibriumare14\text{ g and 3g}$.
The correct option is option “C” .
Note: Always remember that the no. of moles of each gas at the standard conditions of the temperature and pressure, contains Avogadro number of particles and occupies the volume of 22.4 liters.