Question
Question: $\lim_{x\to 1^-} \left( \frac{2}{\pi}sin^{-1}x \right)^{\sqrt{-cot\pi x}}$...
limx→1−(π2sin−1x)−cotπx

e−22/π3/2
Solution
The limit is of the form 1∞. We use the property that if limx→af(x)g(x) is of the form 1∞, then the limit is elimx→ag(x)(f(x)−1).
Let L=limx→1−(π2sin−1x)−cotπx. Here, f(x)=π2sin−1x and g(x)=−cotπx. As x→1−, f(x)→π2sin−1(1)=π2⋅2π=1. g(x)→−cot(π)=∞=∞. (As x→1−, πx→π−, so cot(πx)→−∞, making −cot(πx)→∞).
So, L=eK, where K=limx→1−−cotπx(π2sin−1x−1).
To evaluate K, let x=1−h where h→0+.
-
Evaluate −cotπx: −cotπx=−cot(π(1−h))=−cot(π−πh)=−(−cot(πh))=cot(πh). As h→0+, πh→0+. We know that for small θ, cot(θ)≈θ1. So, cot(πh)≈πh1. Therefore, −cotπx≈πh1.
-
Evaluate π2sin−1x−1: Let sin−1x=2π−θ. As x→1−, θ→0+. Then x=sin(2π−θ)=cos(θ). Since x=1−h, we have 1−h=cos(θ). For small θ, cos(θ)≈1−2θ2. So, 1−h≈1−2θ2, which implies h≈2θ2, or θ≈2h. Now, substitute sin−1x=2π−θ into the expression: π2sin−1x−1=π2(2π−θ)−1=1−π2θ−1=−π2θ. Using θ≈2h, we get: π2sin−1x−1≈−π22h.
-
Calculate K: K=limh→0+(πh1)(−π22h) K=limh→0+(πh1)(−π22h) K=limh→0+−ππ22 K=−π3/222
Finally, the limit L=eK. L=e−22/π3/2.