Solveeit Logo

Question

Question: $\lim_{x\to 1^-} \left( \frac{2}{\pi}sin^{-1}x \right)^{\sqrt{-cot\pi x}}$...

limx1(2πsin1x)cotπx\lim_{x\to 1^-} \left( \frac{2}{\pi}sin^{-1}x \right)^{\sqrt{-cot\pi x}}

Answer

e22/π3/2e^{-2\sqrt{2}/\pi^{3/2}}

Explanation

Solution

The limit is of the form 11^\infty. We use the property that if limxaf(x)g(x)\lim_{x \to a} f(x)^{g(x)} is of the form 11^\infty, then the limit is elimxag(x)(f(x)1)e^{\lim_{x \to a} g(x)(f(x)-1)}.

Let L=limx1(2πsin1x)cotπxL = \lim_{x\to 1^-} \left( \frac{2}{\pi}sin^{-1}x \right)^{\sqrt{-cot\pi x}}. Here, f(x)=2πsin1xf(x) = \frac{2}{\pi}sin^{-1}x and g(x)=cotπxg(x) = \sqrt{-cot\pi x}. As x1x \to 1^-, f(x)2πsin1(1)=2ππ2=1f(x) \to \frac{2}{\pi}sin^{-1}(1) = \frac{2}{\pi} \cdot \frac{\pi}{2} = 1. g(x)cot(π)==g(x) \to \sqrt{-cot(\pi)} = \sqrt{\infty} = \infty. (As x1x \to 1^-, πxπ\pi x \to \pi^-, so cot(πx)cot(\pi x) \to -\infty, making cot(πx)-cot(\pi x) \to \infty).

So, L=eKL = e^K, where K=limx1cotπx(2πsin1x1)K = \lim_{x\to 1^-} \sqrt{-cot\pi x} \left( \frac{2}{\pi}sin^{-1}x - 1 \right).

To evaluate KK, let x=1hx = 1 - h where h0+h \to 0^+.

  1. Evaluate cotπx\sqrt{-cot\pi x}: cotπx=cot(π(1h))=cot(ππh)=(cot(πh))=cot(πh)\sqrt{-cot\pi x} = \sqrt{-cot(\pi(1-h))} = \sqrt{-cot(\pi - \pi h)} = \sqrt{-(-cot(\pi h))} = \sqrt{cot(\pi h)}. As h0+h \to 0^+, πh0+\pi h \to 0^+. We know that for small θ\theta, cot(θ)1θcot(\theta) \approx \frac{1}{\theta}. So, cot(πh)1πhcot(\pi h) \approx \frac{1}{\pi h}. Therefore, cotπx1πh\sqrt{-cot\pi x} \approx \sqrt{\frac{1}{\pi h}}.

  2. Evaluate 2πsin1x1\frac{2}{\pi}sin^{-1}x - 1: Let sin1x=π2θsin^{-1}x = \frac{\pi}{2} - \theta. As x1x \to 1^-, θ0+\theta \to 0^+. Then x=sin(π2θ)=cos(θ)x = sin(\frac{\pi}{2} - \theta) = cos(\theta). Since x=1hx = 1-h, we have 1h=cos(θ)1-h = cos(\theta). For small θ\theta, cos(θ)1θ22cos(\theta) \approx 1 - \frac{\theta^2}{2}. So, 1h1θ221-h \approx 1 - \frac{\theta^2}{2}, which implies hθ22h \approx \frac{\theta^2}{2}, or θ2h\theta \approx \sqrt{2h}. Now, substitute sin1x=π2θsin^{-1}x = \frac{\pi}{2} - \theta into the expression: 2πsin1x1=2π(π2θ)1=12θπ1=2θπ\frac{2}{\pi}sin^{-1}x - 1 = \frac{2}{\pi}\left(\frac{\pi}{2} - \theta\right) - 1 = 1 - \frac{2\theta}{\pi} - 1 = -\frac{2\theta}{\pi}. Using θ2h\theta \approx \sqrt{2h}, we get: 2πsin1x122hπ\frac{2}{\pi}sin^{-1}x - 1 \approx -\frac{2\sqrt{2h}}{\pi}.

  3. Calculate K: K=limh0+(1πh)(22hπ)K = \lim_{h\to 0^+} \left( \sqrt{\frac{1}{\pi h}} \right) \left( -\frac{2\sqrt{2h}}{\pi} \right) K=limh0+(1πh)(22hπ)K = \lim_{h\to 0^+} \left( \frac{1}{\sqrt{\pi}\sqrt{h}} \right) \left( -\frac{2\sqrt{2}\sqrt{h}}{\pi} \right) K=limh0+22ππK = \lim_{h\to 0^+} -\frac{2\sqrt{2}}{\pi\sqrt{\pi}} K=22π3/2K = -\frac{2\sqrt{2}}{\pi^{3/2}}

Finally, the limit L=eKL = e^K. L=e22/π3/2L = e^{-2\sqrt{2}/\pi^{3/2}}.