Question
Question: If $\overrightarrow{F}=3\hat{i}+5\hat{j}-2\hat{k}$ N acting at $7\hat{i}-2\hat{j}+5\hat{k}$, then fi...
If F=3i^+5j^−2k^ N acting at 7i^−2j^+5k^, then find the torque about the point (0,-1,0).

−23i^+29j^+38k^
−19i^+29j^+44k^
−19i^−29j^+44k^
−23i^−29j^+38k^
-23\hat{i}+29\hat{j}+38\hat{k}
Solution
To find the torque (τ) about a point, we use the formula: τ=r×F where r is the position vector from the point about which the torque is calculated to the point where the force acts, and F is the force vector.
-
Identify the force vector (F): Given, F=3i^+5j^−2k^ N
-
Identify the point where the force acts (P): The force acts at 7i^−2j^+5k^. So, the position vector of point P is P=7i^−2j^+5k^.
-
Identify the point about which the torque is calculated (O): The torque is calculated about the point (0,−1,0). So, the position vector of point O is O=0i^−1j^+0k^=−j^.
-
Calculate the position vector (r): The position vector r is from point O to point P: r=P−O r=(7i^−2j^+5k^)−(0i^−1j^+0k^) r=(7−0)i^+(−2−(−1))j^+(5−0)k^ r=7i^+(−2+1)j^+5k^ r=7i^−j^+5k^
-
Calculate the torque vector (τ): Now, calculate the cross product τ=r×F: τ=(7i^−j^+5k^)×(3i^+5j^−2k^) This can be calculated using a determinant:
τ=i^73j^−15k^5−2Expand the determinant:
τ=i^((−1)(−2)−(5)(5))−j^((7)(−2)−(3)(5))+k^((7)(5)−(3)(−1)) τ=i^(2−25)−j^(−14−15)+k^(35−(−3)) τ=i^(−23)−j^(−29)+k^(35+3) τ=−23i^+29j^+38k^The unit of torque is N m.