Question
Question: If $D(x) = \begin{vmatrix} x-1 & (x-1)^2 & x^3 \\ x & x^2 & (x+1)^3 \\ (x+1) & (x+1)^2 & (x+1)^3 \en...
If D(x)=x−1x(x+1)(x−1)2x2(x+1)2x3(x+1)3(x+1)3 then the coefficient of x in D(x) is-

5
-2
6
0
5
Solution
To find the coefficient of x in D(x), we can use two methods:
- Expand the determinant and collect the terms with x.
- Use the property that for a polynomial P(x), the coefficient of x is P′(0).
Method 1: Expansion and Collection of Terms
Given D(x)=x−1x(x+1)(x−1)2x2(x+1)2x3(x+1)3(x+1)3
Apply the row operation R3→R3−R2: D(x)=x−1x(x+1)−x(x−1)2x2(x+1)2−x2x3(x+1)3(x+1)3−(x+1)3 D(x)=x−1x1(x−1)2x2(x2+2x+1−x2)x3(x+1)30 D(x)=x−1x1(x−1)2x22x+1x3(x+1)30
Now, expand the determinant along the third row (R3): D(x)=1⋅(x−1)2x2x3(x+1)3−(2x+1)⋅x−1xx3(x+1)3+0⋅x−1x(x−1)2x2 D(x)=[(x−1)2(x+1)3−x2⋅x3]−(2x+1)[(x−1)(x+1)3−x⋅x3] D(x)=[(x−1)2(x+1)3−x5]−(2x+1)[(x−1)(x+1)3−x4]
Let's find the coefficient of x in each part:
Part 1: (x−1)2(x+1)3−x5 (x−1)2=x2−2x+1 (x+1)3=x3+3x2+3x+1 The product (x−1)2(x+1)3=(x2−2x+1)(x3+3x2+3x+1). To find the coefficient of x, we multiply terms whose powers sum to 1: (1)⋅(3x)+(−2x)⋅(1)=3x−2x=x. So, the coefficient of x in (x−1)2(x+1)3 is 1. The term −x5 does not contribute to the coefficient of x. Contribution from Part 1 to coefficient of x is 1.
Part 2: −(2x+1)[(x−1)(x+1)3−x4] Let A(x)=(x−1)(x+1)3−x4. First, find the terms up to x in A(x): (x−1)(x+1)3=(x−1)(x3+3x2+3x+1) =x(x3+3x2+3x+1)−1(x3+3x2+3x+1) =x4+3x3+3x2+x−x3−3x2−3x−1 =x4+2x3−2x−1 So, A(x)=(x4+2x3−2x−1)−x4=2x3−2x−1. Now, we need the coefficient of x in −(2x+1)A(x)=−(2x+1)(2x3−2x−1). Consider only terms contributing to x: −((2x)(−1)+(1)(−2x)) =−(−2x−2x)=−(−4x)=4x. Contribution from Part 2 to coefficient of x is 4.
Total coefficient of x in D(x) is the sum of contributions from Part 1 and Part 2: 1+4=5.
Method 2: Using Derivatives
The coefficient of x in a polynomial P(x) is P′(0). We need to find D′(0). The derivative of a determinant is the sum of determinants where one row/column is differentiated at a time. D′(x)=dxd(x−1)x(x+1)dxd(x−1)2x2(x+1)2dxd(x3)(x+1)3(x+1)3+x−1dxd(x)(x+1)(x−1)2dxd(x2)(x+1)2x3dxd(x+1)3(x+1)3+x−1xdxd(x+1)(x−1)2x2dxd(x+1)2x3(x+1)3dxd(x+1)3
D′(x)=1x(x+1)2(x−1)x2(x+1)23x2(x+1)3(x+1)3+x−11(x+1)(x−1)22x(x+1)2x33(x+1)2(x+1)3+x−1x1(x−1)2x22(x+1)x3(x+1)33(x+1)2
Now, substitute x=0 into D′(x): D′(0)=10(0+1)2(−1)02(0+1)23(0)2(0+1)3(0+1)3+(0−1)1(0+1)(0−1)22(0)(0+1)2033(0+1)2(0+1)3+(0−1)01(0−1)2022(0+1)03(0+1)33(0+1)2
D′(0)=101−201011+−111101031+−101102013
Calculate each determinant:
- 101−201011=1(0⋅1−1⋅1)−(−2)(0⋅1−1⋅1)+0=1(−1)+2(−1)=−1−2=−3.
- −111101031=−1(0⋅1−3⋅1)−1(1⋅1−3⋅1)+0=−1(−3)−1(1−3)=3−1(−2)=3+2=5.
- −101102013=−1(0⋅3−1⋅2)−1(0⋅3−1⋅1)+0=−1(−2)−1(−1)=2+1=3.
Summing these values: D′(0)=−3+5+3=5.
Both methods yield the same result.
The final answer is 5.