Solveeit Logo

Question

Question: Which of the following when simplified, vanishes...

Which of the following when simplified, vanishes

A

(A) 1log32+2log943log278\frac{1}{\log_3 2} + \frac{2}{\log_9 4} - \frac{3}{\log_{27} 8}

B

(B) log2(23)+log4(94)\log_2 (\frac{2}{3}) + \log_4 (\frac{9}{4})

C

(C) -log8log4log216\log_8 \log_4 \log_2 16

D

(D) log10\log_{10} cot 1° + log10\log_{10}cot 2° + log10\log_{10} cot 3° + ........ + log10\log_{10} cot 89°

Answer

A, B, C, D

Explanation

Solution

(A) 1log32+2log32223log3323=1log32+22log3233log32=1log32+1log321log32=1log320\frac{1}{\log_3 2} + \frac{2}{\log_{3^2} 2^2} - \frac{3}{\log_{3^3} 2^3} = \frac{1}{\log_3 2} + \frac{2}{2\log_3 2} - \frac{3}{3\log_3 2} = \frac{1}{\log_3 2} + \frac{1}{\log_3 2} - \frac{1}{\log_3 2} = \frac{1}{\log_3 2} \neq 0. Correction: 1log32+22log3233log32=1log32+1log321log32\frac{1}{\log_3 2} + \frac{2}{2\log_3 2} - \frac{3}{3\log_3 2} = \frac{1}{\log_3 2} + \frac{1}{\log_3 2} - \frac{1}{\log_3 2} is incorrect. Correct calculation for (A): 1log32+2log943log278=1log32+22log3233log32=1log32+1log321log32\frac{1}{\log_3 2} + \frac{2}{\log_9 4} - \frac{3}{\log_{27} 8} = \frac{1}{\log_3 2} + \frac{2}{2\log_3 2} - \frac{3}{3\log_3 2} = \frac{1}{\log_3 2} + \frac{1}{\log_3 2} - \frac{1}{\log_3 2}. This is still incorrect. Let's re-evaluate (A) using logambn=nmlogab\log_{a^m} b^n = \frac{n}{m} \log_a b: log94=log3222=22log32=log32\log_9 4 = \log_{3^2} 2^2 = \frac{2}{2} \log_3 2 = \log_3 2. log278=log3323=33log32=log32\log_{27} 8 = \log_{3^3} 2^3 = \frac{3}{3} \log_3 2 = \log_3 2. So, the expression becomes 1log32+2log323log32=1+23log32=0log32=0\frac{1}{\log_3 2} + \frac{2}{\log_3 2} - \frac{3}{\log_3 2} = \frac{1+2-3}{\log_3 2} = \frac{0}{\log_3 2} = 0.

(B) log2(2/3)+log4(9/4)=(log22log23)+log22(32/22)=(1log23)+12log2(32/22)=(1log23)+12(2log232log22)=(1log23)+(log231)=0\log_2 (2/3) + \log_4 (9/4) = (\log_2 2 - \log_2 3) + \log_{2^2} (3^2/2^2) = (1 - \log_2 3) + \frac{1}{2} \log_2 (3^2/2^2) = (1 - \log_2 3) + \frac{1}{2} (2\log_2 3 - 2\log_2 2) = (1 - \log_2 3) + (\log_2 3 - 1) = 0.

(C) -log8log4log216=log8log44=log81=0\log_8 \log_4 \log_2 16 = -\log_8 \log_4 4 = -\log_8 1 = 0.

(D) log10(cot1°cot2°cot89°)=log10((cot1°cot89°)(cot44°cot46°)cot45°)=log10((1)(1)1)=log101=0\log_{10}(\cot 1° \cdot \cot 2° \cdot \dots \cdot \cot 89°) = \log_{10}((\cot 1° \cot 89°) \dots (\cot 44° \cot 46°) \cot 45°) = \log_{10}((1) \dots (1) \cdot 1) = \log_{10} 1 = 0.