Solveeit Logo

Question

Question: Which of the following when simplified, vanishes...

Which of the following when simplified, vanishes

A

(A) 1log32+2log943log278\frac{1}{\log_3 2} + \frac{2}{\log_9 4} - \frac{3}{\log_{27} 8}

B

(B) log2(23)+log4(94)\log_2 (\frac{2}{3}) + \log_4 (\frac{9}{4})

C

(C) – log8log4log216\log_8 \log_4 \log_2 16

D

(D) log10cot1+log10cot2+log10cot3++log10cot89\log_{10} \cot 1^\circ + \log_{10} \cot 2^\circ + \log_{10} \cot 3^\circ + \dots + \log_{10} \cot 89^\circ

Answer

(A), (B), (C), (D)

Explanation

Solution

(A) 1log32+2log943log278=log23+2log233log23=0\frac{1}{\log_3 2} + \frac{2}{\log_9 4} - \frac{3}{\log_{27} 8} = \log_2 3 + 2\log_2 3 - 3\log_2 3 = 0.

(B) log2(23)+log4(94)=(log22log23)+(log49log44)=(1log23)+(log231)=0\log_2 (\frac{2}{3}) + \log_4 (\frac{9}{4}) = (\log_2 2 - \log_2 3) + (\log_4 9 - \log_4 4) = (1 - \log_2 3) + (\log_2 3 - 1) = 0.

(C) – log8log4log216=log8log44=log81=0\log_8 \log_4 \log_2 16 = -\log_8 \log_4 4 = -\log_8 1 = 0.

(D) log10(cot1cot2cot89)\log_{10} (\cot 1^\circ \cdot \cot 2^\circ \cdot \dots \cdot \cot 89^\circ). Since cot(90x)=tanx\cot(90^\circ - x) = \tan x, the product is (cot1tan1)(cot44tan44)cot45=1111=1(\cot 1^\circ \tan 1^\circ) \dots (\cot 44^\circ \tan 44^\circ) \cot 45^\circ = 1 \cdot 1 \cdot \dots \cdot 1 \cdot 1 = 1. Thus, log101=0\log_{10} 1 = 0.