Solveeit Logo

Question

Question: Given x, y ∈ R, $x^2+y^2>0$. If the maximum and minimum value of the expression $E = \frac{x^2+y^2}{...

Given x, y ∈ R, x2+y2>0x^2+y^2>0. If the maximum and minimum value of the expression E=x2+y2x2+xy+4y2E = \frac{x^2+y^2}{x^2+xy+4y^2} are M and m, and A denotes the average value of M and m, compute (2016)A.

Answer

1344

Explanation

Solution

  1. Homogeneous Expression: The given expression E=x2+y2x2+xy+4y2E = \frac{x^2+y^2}{x^2+xy+4y^2} is homogeneous. This means we can divide the numerator and denominator by y2y^2 (assuming y0y \ne 0) to express EE as a function of a single variable t=x/yt = x/y.

  2. Form a Quadratic Equation: Substitute t=x/yt=x/y into the expression for EE, which gives E=t2+1t2+t+4E = \frac{t^2+1}{t^2+t+4}. Rearrange this equation to form a quadratic equation in tt: (E1)t2+Et+(4E1)=0(E-1)t^2 + Et + (4E-1) = 0.

  3. Use Discriminant Condition: For tt to be a real number, the discriminant (DD) of this quadratic equation must be non-negative (D0D \ge 0). Calculate D=E24(E1)(4E1)D = E^2 - 4(E-1)(4E-1).

  4. Solve Inequality for E: The discriminant condition leads to the inequality 15E220E+4015E^2 - 20E + 4 \le 0. Solve for the roots of 15E220E+4=015E^2 - 20E + 4 = 0 using the quadratic formula, which are E=10±21015E = \frac{10 \pm 2\sqrt{10}}{15}.

  5. Determine Max and Min Values: Since the parabola 15E220E+415E^2 - 20E + 4 opens upwards, the inequality 15E220E+4015E^2 - 20E + 4 \le 0 holds for EE values between the roots. Thus, m=1021015m = \frac{10 - 2\sqrt{10}}{15} and M=10+21015M = \frac{10 + 2\sqrt{10}}{15}.

  6. Check Edge Case (y=0y=0): If y=0y=0, E=x2x2=1E = \frac{x^2}{x^2} = 1. This value lies within the determined range, confirming the maximum and minimum values.

  7. Calculate Average and Final Result: Compute the average A=M+m2=20/152=4/32=23A = \frac{M+m}{2} = \frac{20/15}{2} = \frac{4/3}{2} = \frac{2}{3}. Finally, calculate (2016)A=2016×23=1344(2016)A = 2016 \times \frac{2}{3} = 1344.