Solveeit Logo

Question

Question: $\lim_{x \to 1} \left( \frac{2024}{x^{2024}-1} - \frac{2022}{x^{2022}-1} \right)$...

limx1(2024x202412022x20221)\lim_{x \to 1} \left( \frac{2024}{x^{2024}-1} - \frac{2022}{x^{2022}-1} \right)

A

1

B

-1

C

0

D

The limit does not exist.

Answer

-1

Explanation

Solution

To solve the limit limx1(2024x202412022x20221)\lim_{x \to 1} \left( \frac{2024}{x^{2024}-1} - \frac{2022}{x^{2022}-1} \right), we first observe that as x1x \to 1, both denominators x20241x^{2024}-1 and x20221x^{2022}-1 approach 0. This results in an indeterminate form of type \infty - \infty.

We combine the fractions: L=limx12024(x20221)2022(x20241)(x20241)(x20221)L = \lim_{x \to 1} \frac{2024(x^{2022}-1) - 2022(x^{2024}-1)}{(x^{2024}-1)(x^{2022}-1)} Let the numerator be N(x)=2024(x20221)2022(x20241)=2024x202220242022x2024+2022=2022x2024+2024x20222N(x) = 2024(x^{2022}-1) - 2022(x^{2024}-1) = 2024x^{2022} - 2024 - 2022x^{2024} + 2022 = -2022x^{2024} + 2024x^{2022} - 2. Let the denominator be D(x)=(x20241)(x20221)D(x) = (x^{2024}-1)(x^{2022}-1).

As x1x \to 1, N(1)=2022(1)2024+2024(1)20222=2022+20242=0N(1) = -2022(1)^{2024} + 2024(1)^{2022} - 2 = -2022 + 2024 - 2 = 0. And D(1)=(120241)(120221)=(11)(11)=0D(1) = (1^{2024}-1)(1^{2022}-1) = (1-1)(1-1) = 0. This is an indeterminate form of type 00\frac{0}{0}, so we can apply L'Hopital's Rule.

Let n1=2024n_1 = 2024 and n2=2022n_2 = 2022. The expression becomes: L=limx1n1(xn21)n2(xn11)(xn11)(xn21)L = \lim_{x \to 1} \frac{n_1(x^{n_2}-1) - n_2(x^{n_1}-1)}{(x^{n_1}-1)(x^{n_2}-1)} Numerator: N(x)=n1xn2n1n2xn1+n2N(x) = n_1 x^{n_2} - n_1 - n_2 x^{n_1} + n_2. Denominator: D(x)=xn1+n2xn1xn2+1D(x) = x^{n_1+n_2} - x^{n_1} - x^{n_2} + 1.

First derivative of N(x)N(x): N(x)=n1n2xn21n2n1xn11N'(x) = n_1 n_2 x^{n_2-1} - n_2 n_1 x^{n_1-1}. N(1)=n1n2n2n1=0N'(1) = n_1 n_2 - n_2 n_1 = 0. First derivative of D(x)D(x): D(x)=(n1+n2)xn1+n21n1xn11n2xn21D'(x) = (n_1+n_2)x^{n_1+n_2-1} - n_1 x^{n_1-1} - n_2 x^{n_2-1}. D(1)=(n1+n2)n1n2=0D'(1) = (n_1+n_2) - n_1 - n_2 = 0.

Since the first derivatives are also zero at x=1x=1, we apply L'Hopital's Rule again. Second derivative of N(x)N(x): N(x)=n1n2(n21)xn22n2n1(n11)xn12N''(x) = n_1 n_2 (n_2-1) x^{n_2-2} - n_2 n_1 (n_1-1) x^{n_1-2}. N(1)=n1n2(n21)n2n1(n11)=n1n2[(n21)(n11)]=n1n2(n2n1)N''(1) = n_1 n_2 (n_2-1) - n_2 n_1 (n_1-1) = n_1 n_2 [(n_2-1) - (n_1-1)] = n_1 n_2 (n_2 - n_1).

Second derivative of D(x)D(x): D(x)=(n1+n2)(n1+n21)xn1+n22n1(n11)xn12n2(n21)xn22D''(x) = (n_1+n_2)(n_1+n_2-1)x^{n_1+n_2-2} - n_1(n_1-1)x^{n_1-2} - n_2(n_2-1)x^{n_2-2}. D(1)=(n1+n2)(n1+n21)n1(n11)n2(n21)D''(1) = (n_1+n_2)(n_1+n_2-1) - n_1(n_1-1) - n_2(n_2-1).

Now, substitute n1=2024n_1 = 2024 and n2=2022n_2 = 2022: N(1)=20242022(20222024)=20242022(2)N''(1) = 2024 \cdot 2022 (2022 - 2024) = 2024 \cdot 2022 \cdot (-2).

D(1)=(2024+2022)(2024+20221)2024(20241)2022(20221)D''(1) = (2024+2022)(2024+2022-1) - 2024(2024-1) - 2022(2022-1) D(1)=(4046)(4045)2024(2023)2022(2021)D''(1) = (4046)(4045) - 2024(2023) - 2022(2021) D(1)=(2024+2022)(2024+2021)2024(2023)2022(2021)D''(1) = (2024+2022)(2024+2021) - 2024(2023) - 2022(2021) D(1)=(20242+20242021+20222024+20222021)2024202320222021D''(1) = (2024^2 + 2024 \cdot 2021 + 2022 \cdot 2024 + 2022 \cdot 2021) - 2024 \cdot 2023 - 2022 \cdot 2021 D(1)=20242+20242021+2022202420242023D''(1) = 2024^2 + 2024 \cdot 2021 + 2022 \cdot 2024 - 2024 \cdot 2023 D(1)=2024(2024+20212023)+20222024D''(1) = 2024(2024 + 2021 - 2023) + 2022 \cdot 2024 D(1)=2024(40452023)+20222024D''(1) = 2024(4045 - 2023) + 2022 \cdot 2024 D(1)=2024(2022)+20222024=220242022D''(1) = 2024(2022) + 2022 \cdot 2024 = 2 \cdot 2024 \cdot 2022.

By L'Hopital's Rule, the limit is: L=N(1)D(1)=20242022(2)220242022=1L = \frac{N''(1)}{D''(1)} = \frac{2024 \cdot 2022 \cdot (-2)}{2 \cdot 2024 \cdot 2022} = -1