Solveeit Logo

Question

Question: If points $D, E$ and $F$ divide sides $BC, CA$ and $AB$ respectively in ratio $\lambda:1$ (in order)...

If points D,ED, E and FF divide sides BC,CABC, CA and ABAB respectively in ratio λ:1\lambda:1 (in order) and or ar(DEF)=0.4ar(\triangle DEF)=0.4 ar(ABC)ar(\triangle ABC), then λ\lambda is equal to :

A

252\frac{2-\sqrt{5}}{2}

B

352\frac{3-\sqrt{5}}{2}

C

2+52\frac{2+\sqrt{5}}{2}

D

3+52\frac{3+\sqrt{5}}{2}

Answer

352\frac{3-\sqrt{5}}{2} and 3+52\frac{3+\sqrt{5}}{2}

Explanation

Solution

The problem asks us to find the value of λ\lambda given that points D,E,FD, E, F divide sides BC,CA,ABBC, CA, AB respectively in the ratio λ:1\lambda:1, and the area of DEF\triangle DEF is 0.40.4 times the area of ABC\triangle ABC.

Let ar(ABC)ar(\triangle ABC) denote the area of triangle ABCABC. The ratio of the area of the inner triangle DEFDEF to the area of the outer triangle ABCABC, when the sides are divided in the ratio m:nm:n (i.e., BD:DC=m:nBD:DC = m:n, CE:EA=m:nCE:EA = m:n, AF:FB=m:nAF:FB = m:n), is given by the formula:

ar(DEF)ar(ABC)=m2mn+n2(m+n)2\frac{ar(\triangle DEF)}{ar(\triangle ABC)} = \frac{m^2 - mn + n^2}{(m+n)^2}

In this problem, the ratio is λ:1\lambda:1, so we have m=λm=\lambda and n=1n=1. Substituting these values into the formula, we get:

ar(DEF)ar(ABC)=λ2λ1+12(λ+1)2=λ2λ+1(λ+1)2\frac{ar(\triangle DEF)}{ar(\triangle ABC)} = \frac{\lambda^2 - \lambda \cdot 1 + 1^2}{(\lambda+1)^2} = \frac{\lambda^2 - \lambda + 1}{(\lambda+1)^2}

We are given that ar(DEF)=0.4ar(ABC)ar(\triangle DEF) = 0.4 \cdot ar(\triangle ABC). This means ar(DEF)ar(ABC)=0.4=410=25\frac{ar(\triangle DEF)}{ar(\triangle ABC)} = 0.4 = \frac{4}{10} = \frac{2}{5}.

Now, we equate the two expressions for the ratio of the areas:

λ2λ+1(λ+1)2=25\frac{\lambda^2 - \lambda + 1}{(\lambda+1)^2} = \frac{2}{5}

Cross-multiply to solve for λ\lambda:

5(λ2λ+1)=2(λ+1)25(\lambda^2 - \lambda + 1) = 2(\lambda+1)^2 5λ25λ+5=2(λ2+2λ+1)5\lambda^2 - 5\lambda + 5 = 2(\lambda^2 + 2\lambda + 1) 5λ25λ+5=2λ2+4λ+25\lambda^2 - 5\lambda + 5 = 2\lambda^2 + 4\lambda + 2

Rearrange the terms to form a quadratic equation:

(5λ22λ2)+(5λ4λ)+(52)=0(5\lambda^2 - 2\lambda^2) + (-5\lambda - 4\lambda) + (5 - 2) = 0 3λ29λ+3=03\lambda^2 - 9\lambda + 3 = 0

Divide the entire equation by 3:

λ23λ+1=0\lambda^2 - 3\lambda + 1 = 0

Now, use the quadratic formula λ=b±b24ac2a\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} to find the values of λ\lambda. Here, a=1a=1, b=3b=-3, c=1c=1.

λ=(3)±(3)24(1)(1)2(1)\lambda = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(1)}}{2(1)} λ=3±942\lambda = \frac{3 \pm \sqrt{9 - 4}}{2} λ=3±52\lambda = \frac{3 \pm \sqrt{5}}{2}

This gives two possible values for λ\lambda:

  1. λ1=3+52\lambda_1 = \frac{3 + \sqrt{5}}{2}
  2. λ2=352\lambda_2 = \frac{3 - \sqrt{5}}{2}

Both values are positive (52.236\sqrt{5} \approx 2.236), so both represent valid ratios for internal division of the sides.

Both 352\frac{3-\sqrt{5}}{2} and 3+52\frac{3+\sqrt{5}}{2} are present in the given options (B) and (D) respectively.

Therefore, both (B) and (D) are correct.